A059080
Triangle A(n,m) of numbers of n-element T_0-antichains on a labeled m-set, m=0,...,2^n.
Original entry on oeis.org
1, 1, 1, 2, 2, 0, 0, 1, 6, 12, 0, 0, 0, 2, 52, 520, 2640, 6720, 6720, 0, 0, 0, 0, 25, 1770, 53940, 1012620, 13487040, 136745280, 1094688000, 7025356800, 36084787200, 145297152000, 435891456000, 871782912000, 871782912000
Offset: 0
[1, 1], [1, 2, 2], [0, 0, 1, 6, 12], [0, 0, 0, 2, 52, 520, 2640, 6720, 6720], ...; there are 2 3-element T_0-antichains on a 3-set: {{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
A059082
Number of 6-element T_0-antichains on a labeled n-set, n = 0, ..., 64.
Original entry on oeis.org
0, 0, 0, 0, 1, 1370, 738842, 176796382, 26021566536, 2807549333568, 245222809302240, 18418417704308160, 1236761946163054080, 76210520306627266560, 4388527139331858082560, 239214759548062858560000, 12457699161320493400320000, 623967599346727576292352000
Offset: 0
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
-
f:=proc(k,n) if k+1<=n then RETURN(0) else RETURN(k!/(k - n)!) fi: end;a:=n->(1/6!)*(f(64,n) - 30*f(48,n) + 120*f(40,n) + 60*f(36,n) + 60*f(34,n)- 12*f(33,n) - 345*f(32,n) - 720*f(30,n) + 810*f(28,n) + 120*f(27,n) + 480*f(26,n) + 360*f(25,n) - 480*f(24,n) - 720*f(23,n) - 240*f(22,n) - 540*f(21,n) + 1380*f(20,n) + 750*f(19,n) + 60*f(18,n) - 210*f(17,n) - 1535*f(16,n) - 1820*f(15,n) + 2250*f(14,n) + 1800*f(13,n) - 2820*f(12,n) + 300*f(11,n) + 2040*f(10,n) + 340*f(9,n) - 1815*f(8,n) + 510*f(7,n) - 1350*f(6,n) + 1350*f(5,n) + 274*f(4,n) - 548*f(3,n) + 120*f(2,n));seq(a(n),n=0..20); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Showing 1-2 of 2 results.
Comments