A059083
Number of T_0-antichains on a labeled n-set.
Original entry on oeis.org
2, 3, 3, 8, 96, 6373, 7725703, 2414518872815, 56130437161078967568912
Offset: 0
a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 2 + 1, a(3) = 6 + 2, a(4) = 12 + 52 + 25 + 6 + 1, a(5) = 520 + 1770 + 2086 + 1370 + 490 + 115 + 20 + 2.
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- V. Jovovic, 3-element T_0-antichains on a labeled 4-set
- V. Jovovic, Formula for the number of m-element T_0-antichains on a labeled n-set
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A059081
Number of 5-element T_0-antichains on a labeled n-set, n=0,..,32.
Original entry on oeis.org
0, 0, 0, 0, 6, 2086, 273072, 19371912, 940055760, 35289051840, 1099827892800, 29723466326400, 716351882400000, 15683016533184000, 315722887044364800, 5890186860509952000, 102288867798813696000, 1656523525703574528000
Offset: 0
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
-
P[x_, n_] := (-1)^n*Pochhammer[-x, n]; Table[(1/5!)*(P[32, n] - 20*P[24, n] + 60*P[20, n] + 20*P[18, n] + 10*P[17, n] - 110*P[16, n] - 120*P[15, n] + 150*P[14, n] + 120*P[13, n] - 240*P[12, n] + 20*P[11, n] + 240*P[10, n] + 40*P[9, n] - 205*P[8, n] + 60*P[7, n] - 210*P[6, n] + 210*P[5, n] + 50*P[4, n] - 100*P[3, n] + 24*P[2, n]), {n, 0, 32}] (* G. C. Greubel, Oct 07 2017 *)
Showing 1-2 of 2 results.
Comments