A059170 Strictly undulating primes (digits alternate and differ by 1).
2, 3, 5, 7, 23, 43, 67, 89, 101, 787, 32323, 78787, 1212121, 323232323, 989898989, 12121212121, 32323232323, 787878787878787878787, 787878787878787878787878787, 1212121212121212121212121212121212121212121
Offset: 1
References
- C. A. Pickover, "Keys to Infinity", Wiley 1995, pp. 159-160.
- C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..25 (All terms with less than 1000 digits.)
- Patrick De Geest, More undulating primes
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
Programs
-
Mathematica
a[n_]:=DeleteDuplicates[Take[IntegerDigits[n],{1,-1,2}]]; b[n_]:=DeleteDuplicates[Take[IntegerDigits[n],{2,-1,2}]]; t={}; Do[p=Prime[n]; If[p<10, AppendTo[t,p], If[Length[a[p]] == Length[b[p]] == 1 && Abs[a[p][[1]]-b[p][[1]]] == 1, AppendTo[t,p]]], {n,10^5}]; t (* Jayanta Basu, May 08 2013 *) t1=Join[{2,3,5,7},Select[Range[10,100],PrimeQ[#]&&Abs[Differences[IntegerDigits[#]]]=={1}&]]; Do[a=n*10+(n-1);b=(n-1)*10+n; t1=Join[t1,Select[Table[(a*10^(2*n+1)-b)/99,{n,25}],PrimeQ]]; If[n<=7,c=n*10+(n+1);d=(n+1)*10+n;t1=Join[t1,Select[Table[(c*10^(2*n+1)-d)/99,{n,25}],PrimeQ]]],{n,1,9,2}]; Sort[t1] (* Jayanta Basu, May 09 2013 *) With[{c=Flatten[{#,Reverse[#]}&/@Table[{a,a+1},{a,0,8}],1]},Flatten[ Select[ Table[ FromDigits[PadRight[{},n,#]],{n,50}],PrimeQ]&/@c]]//Union (* Harvey P. Dale, Aug 20 2022 *)
Extensions
Extended by Patrick De Geest, Feb 25 2001
Offset corrected by Arkadiusz Wesolowski, Sep 13 2011
Comments