A059204 Number of non-unimodal permutations of n items (i.e., those which do not simply go up for the first part and then down for the rest, but at some point go down then up).
0, 0, 0, 2, 16, 104, 688, 4976, 40192, 362624, 3628288, 39915776, 478999552, 6227016704, 87178283008, 1307674351616, 20922789855232, 355687428030464, 6402373705596928, 121645100408569856, 2432902008176115712, 51090942171708391424, 1124000727777605582848
Offset: 0
Examples
a(3) = 2 since the possibilities are {BAC, CAB}. a(4) = 16 since the possibilities are {ACBD, ADBC, BACD, BADC, BCAD, BDAC, CABD, CADB, CBAD, CBDA, CDAB, DABC, DACB, DBAC, DBCA, DCAB}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
a:= n-> n!-ceil(2^(n-1)): seq(a(n), n=0..30);
-
Mathematica
nn=30;Range[0,nn]!CoefficientList[Series[1/(1-x)-Exp[2x]/2-1/2,{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2014 *)
-
PARI
x= 'x + O('x^50); concat([0,0,0], Vec(serlaplace((1+x)/(2*(1-x))-exp(2*x)/2))) \\ G. C. Greubel, Dec 28 2016
Comments