cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059204 Number of non-unimodal permutations of n items (i.e., those which do not simply go up for the first part and then down for the rest, but at some point go down then up).

Original entry on oeis.org

0, 0, 0, 2, 16, 104, 688, 4976, 40192, 362624, 3628288, 39915776, 478999552, 6227016704, 87178283008, 1307674351616, 20922789855232, 355687428030464, 6402373705596928, 121645100408569856, 2432902008176115712, 51090942171708391424, 1124000727777605582848
Offset: 0

Views

Author

Henry Bottomley, Jan 17 2001

Keywords

Comments

Number of permutations of [n] minus the number of compositions of n. - Zerinvary Lajos, Oct 16 2006

Examples

			a(3) = 2 since the possibilities are {BAC, CAB}. a(4) = 16 since the possibilities are {ACBD, ADBC, BACD, BADC, BCAD, BDAC, CABD, CADB, CBAD, CBDA, CDAB, DABC, DACB, DBAC, DBCA, DCAB}.
		

Programs

  • Maple
    a:= n-> n!-ceil(2^(n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    nn=30;Range[0,nn]!CoefficientList[Series[1/(1-x)-Exp[2x]/2-1/2,{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2014 *)
  • PARI
    x= 'x + O('x^50); concat([0,0,0], Vec(serlaplace((1+x)/(2*(1-x))-exp(2*x)/2))) \\ G. C. Greubel, Dec 28 2016

Formula

a(n) = n! - ceiling(2^(n-1)) = A000142(n) - A011782(n).
E.g.f.: (1+x)/(2*(1-x))-exp(2*x)/2.