cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059236 Primes p such that x^41 = 2 has no solution mod p.

Original entry on oeis.org

83, 739, 821, 1231, 1559, 1723, 2297, 2543, 2707, 2789, 2953, 3527, 3691, 4019, 5003, 5167, 5413, 5659, 5741, 5987, 6151, 6397, 6971, 7873, 8447, 8693, 9103, 9349, 9431, 9677, 9923, 10169, 10333, 11071, 11317, 11399, 12301, 12547, 13121, 13367
Offset: 1

Views

Author

Klaus Brockhaus, Jan 20 2001

Keywords

Comments

Complement of A049573 relative to A000040.
Presumably this is also "Primes congruent to 1 mod 41" (A212379), but that requires a proof. - N. J. A. Sloane, Jul 11 2008
Smallest counterexample: 17467 is not in A059236, but congruent to 1 mod 41 (17467 = 426*41+1). - Klaus Brockhaus, May 18 2011

Crossrefs

Subsequence of A212379.

Programs

  • Magma
    [p: p in PrimesUpTo(13400) | not exists{x: x in ResidueClassRing(p) | x^41 eq 2}]; // Klaus Brockhaus, May 18 2011
    
  • Magma
    /* Alternatively: */ [p: p in PrimesUpTo(13400) | forall{x: x in ResidueClassRing(p) | x^41 ne 2}]; // Bruno Berselli, Sep 20 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^41 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 20 2012 *)
    Select[Prime[Range[PrimePi[14000]]], ! MemberQ[PowerMod[Range[#], 41, #], Mod[2, #]] &] (* Bruno Berselli, Sep 20 2012 *)
  • PARI
    forprime(p=2, 69589957, if(trap(, 1, sqrtn(Mod(2, p), 41); 0), print1(p,", "))) \\ Klaus Brockhaus, May 18 2011
    
  • PARI
    N=10^5;  default(primelimit,N);
    ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
    forprime(p=2,N, if (! ok(p,2,41),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */