A059236 Primes p such that x^41 = 2 has no solution mod p.
83, 739, 821, 1231, 1559, 1723, 2297, 2543, 2707, 2789, 2953, 3527, 3691, 4019, 5003, 5167, 5413, 5659, 5741, 5987, 6151, 6397, 6971, 7873, 8447, 8693, 9103, 9349, 9431, 9677, 9923, 10169, 10333, 11071, 11317, 11399, 12301, 12547, 13121, 13367
Offset: 1
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..100000
Programs
-
Magma
[p: p in PrimesUpTo(13400) | not exists{x: x in ResidueClassRing(p) | x^41 eq 2}]; // Klaus Brockhaus, May 18 2011
-
Magma
/* Alternatively: */ [p: p in PrimesUpTo(13400) | forall{x: x in ResidueClassRing(p) | x^41 ne 2}]; // Bruno Berselli, Sep 20 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^41 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 20 2012 *) Select[Prime[Range[PrimePi[14000]]], ! MemberQ[PowerMod[Range[#], 41, #], Mod[2, #]] &] (* Bruno Berselli, Sep 20 2012 *)
-
PARI
forprime(p=2, 69589957, if(trap(, 1, sqrtn(Mod(2, p), 41); 0), print1(p,", "))) \\ Klaus Brockhaus, May 18 2011
-
PARI
N=10^5; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (! ok(p,2,41),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments