A059260 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 1, 1, 1; 0, 2, 2, 1; 1, 2, 4, 3, 1; 0, 3, 6, 7, 4, 1; 1, 3, 9, 13, 11, 5, 1; 0, 4, 12, 22, 24, 16, 6, 1; 1, 4, 16, 34, 46, 40, 22, 7, 1; 0, 5, 20, 50, 80, 86, 62, 29, 8, 1; Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6): A000007 A000012 A000027 A025747 A000292* A000332* A000389* A059841 A008619 A087811* A002623 A001752 A001753 A001769 A193356 A008794* A005993 A005994 ------- ------- ------- ------- ------- ------- A005995 A018210 ------- A052267 ------- ------- ------- ------- A018211 A018212 ------- ------- ------- ------- ------- ------- A018213 A018214 ------- ------- ------- ------- ------- ------- A062136 *requires offset adjustment. The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33. 22--12---24---14---44 | \ / | 23 11 34 \ | / 13 | 33
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- Joseph Briggs, Alex Parker, Coy Schwieder, and Chris Wells, Frogs, hats and common subsequences, arXiv:2404.07285 [math.CO], 2024. See p. 28.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
- R. H. Hammack and G. D. Smith, Cycle bases of reduced powers of graphs, Ars Math. Contemp. 12 (2017) 183-203.
- Christian Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683.
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, Numerical Algorithms, June 2012, Volume 60, Issue 2, pp 297-314. - From _N. J. A. Sloane_, Oct 12 2012
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, preprint, Centro de Matemática da Universidade do Porto.
- MathOverflow, Cyclotomic Polynomials in Combinatorics
- Mark Norfleet, Characterization of second-order strong divisibility sequences of polynomials, The Fibonacci Quarterly, 43(2) (2005), 166-169.
Crossrefs
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808 etc. (allowing for signs). A058393 would then effectively provide the table for nonpositive n. - Henry Bottomley, Jun 25 2001
Programs
-
Maple
read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
-
Mathematica
t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
-
PARI
T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k)); for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
Python
from sympy import binomial def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1)) for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
-
Sage
def A059260_row(n): @cached_function def prec(n, k): if k==n: return 1 if k==0: return 0 return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1)) return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)] for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
Formula
G.f.: 1/(1-y-x*y-x^2) = 1 + y + x^2 + xy + y^2 + 2x^2y + 2xy^2 + y^3 + ...
E.g.f: (exp(-t)+(x+1)*exp((x+1)*t))/(x+2). - Tom Copeland, Mar 19 2014
O.g.f. (n-th row): ((-1)^n+(x+1)^(n+1))/(x+2). - Tom Copeland, Mar 19 2014
T(i, 0) = 1 if i is even or 0 if i is odd, T(0, i) = 1 and otherwise T(i, j) = T(i-1, j) + T(i, j-1); also T(i, j) = Sum_{m=j..i+j} (-1)^(i+j+m)*binomial(m, j). - Robert FERREOL, May 17 2002
T(i, j) ~ (i+j)/(2*i+j)*binomial(i+j, j); more precisely, abs(T(i, j)/binomial(i+j, j) - (i+j)/(2*i+j) )<=1/(4*(i+j)-2); the proof is by induction on i+j using the formula 2*T(i, j) = binomial(i+j, j)+T(i, j-1). - Claude Morin, May 21 2002
T(n, k) = Sum_{j=0..n} (-1)^(n-j)binomial(j, k). - Paul Barry, Aug 25 2004
T(n, k) = Sum_{j=0..n-k} binomial(n-j, j)*binomial(j, n-k-j). - Paul Barry, Jul 25 2005
Equals A130595*A097805*A007318 = (inverse Pascal matrix)*(padded Pascal matrix)*(Pascal matrix) = A130595*A200139. Inverse is A097808 = A130595*(padded A130595)*A007318. - Tom Copeland, Nov 14 2016
T(i, j) = binomial(i+j, j)-T(i-1, j). - Laszlo Major, Apr 11 2017
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = x*R(n-1,x) + (x + 1)*R(n-2,x) with R(1,x) = 1 and R(2,x) = x. - Peter Bala, Feb 07 2024
From Miquel A. Fiol, Sep 30 2024: (Start)
The triangle can be seen as a slice of a 3-dimensional table that links it to well-known sequences as follows.
The j-th column of the triangle, T(i,j) for i >= j, equals A(n,c1,c2) = Sum_{k=0..floor(n/2)} binomial(c1+2*k-1,2*k)*binomial(c2+n-2*k-1,n-2*k) when c1=1, c2=j, and n=i-j.
This gives T(i,j) = Sum_{k=0..floor((i-j)/2)} binomial(i-2*k-1, j-1). For other values of (c1,c2), see the example below. (End)
Extensions
Formula corrected by Philippe Deléham, Jan 11 2014
Comments