A059298 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.
1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0
Examples
Triangle begins 1; 2, 1; 3, 6, 1; 4, 24, 12, 1; ... From _Peter Bala_, Jul 22 2014: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |2 1 ||0 1 ||0 1 | |2 1 | |3 4 1 ||0 2 1 ||0 0 1 |... = |3 6 1 | |4 9 6 1 ||0 3 4 1 ||0 0 2 1 | |4 24 12 1 | |5 16 18 8 1||0 4 9 6 1||0 0 3 4 1| |5 80 90 20 1| |... ||... ||... | |... | (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Idempotent Number
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
Maple
T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
-
Mathematica
t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *) t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
-
PARI
for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
Comments