A059300 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.
1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0
Examples
Triangle begins: 1; 1, 2; 1, 6, 3; 1, 12, 24, 4; 1, 20, 90, 80, 5; 1, 30, 240, 540, 240, 6; 1, 42, 525, 2240, 2835, 672, 7; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- John Riordan and N. J. A. Sloane, Correspondence, 1974
Crossrefs
Programs
-
Magma
/* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
Mathematica
t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
PARI
for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017
Formula
T(n,k) = binomial(n+1,n-k+1)*(n-k+1)^k. - R. J. Mathar, Mar 14 2013