cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059328 Table T(n,k) = T(n - 1,k) + T(n,k - 1) + T(n - 1,k)*T(n,k - 1) starting with T(0,0)=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 63, 15, 1, 1, 31, 1023, 1023, 31, 1, 1, 63, 32767, 1048575, 32767, 63, 1, 1, 127, 2097151, 34359738367, 34359738367, 2097151, 127, 1, 1, 255, 268435455, 72057594037927935, 1180591620717411303423, 72057594037927935, 268435455, 255, 1
Offset: 0

Views

Author

Henry Bottomley, Jan 26 2001

Keywords

Comments

In binary representation T(n,k) is the concatenation of T(n-1,k-1) and T(n-1,k), 0Reinhard Zumkeller, Jan 23 2003

Examples

			Triangle T(n,k) begins:
  1;
  1,  1;
  1,  3,     1;
  1,  7,     7,       1;
  1, 15,    63,      15,     1;
  1, 31,  1023,    1023,    31,  1;
  1, 63, 32767, 1048575, 32767, 63, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A000225, A126883(n-1).
Row sums give A306020.
Cf. A007318.

Programs

  • Mathematica
    Table[2^(Binomial[n, k]) - 1, {n, 0, 5}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
  • Python
    from math import comb, isqrt
    def A059328(n): return (1<Chai Wah Wu, Apr 30 2025

Formula

T(n, k) = 2^C(n+k, n)-1; a(n) = 2^A007318(n)-1.
If U(n, k) := 1 + T(n, k), then U(n, k) = U(n-1, k) * U(n, k-1). - Michael Somos, Jan 07 2017