A059328 Table T(n,k) = T(n - 1,k) + T(n,k - 1) + T(n - 1,k)*T(n,k - 1) starting with T(0,0)=1, read by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 63, 15, 1, 1, 31, 1023, 1023, 31, 1, 1, 63, 32767, 1048575, 32767, 63, 1, 1, 127, 2097151, 34359738367, 34359738367, 2097151, 127, 1, 1, 255, 268435455, 72057594037927935, 1180591620717411303423, 72057594037927935, 268435455, 255, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 63, 15, 1; 1, 31, 1023, 1023, 31, 1; 1, 63, 32767, 1048575, 32767, 63, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 14 rows, flattened
Programs
-
Mathematica
Table[2^(Binomial[n, k]) - 1, {n, 0, 5}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
-
Python
from math import comb, isqrt def A059328(n): return (1<
Chai Wah Wu, Apr 30 2025
Formula
T(n, k) = 2^C(n+k, n)-1; a(n) = 2^A007318(n)-1.
If U(n, k) := 1 + T(n, k), then U(n, k) = U(n-1, k) * U(n, k-1). - Michael Somos, Jan 07 2017
Comments