cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059332 Determinant of n X n matrix A defined by A[i,j] = (i+j-1)! for 1 <= i,j <= n.

Original entry on oeis.org

1, 1, 2, 24, 3456, 9953280, 859963392000, 3120635156889600000, 634153008009974906880000000, 9278496603801318870491332608000000000, 12218100099725239100847669366019325952000000000000, 1769792823810713244721831122736499011207487815680000000000000000
Offset: 0

Views

Author

Noam Katz (noamkj(AT)hotmail.com), Jan 26 2001

Keywords

Comments

Hankel transform of n! (A000142(n)) and of A003319. - Paul Barry, Oct 07 2008
Hankel transform of A000255. - Paul Barry, Apr 22 2009
Monotonic magmas of size n, i.e., magmas with elements labeled 1..n where product(i,j) >= max(i,j). - Chad Brewbaker, Nov 03 2013
Also called the bouncing factorial function. - Alexander Goebel, Apr 08 2020

Examples

			a(4) = 3456 because the relevant matrix is {1 2 6 24 / 2 6 24 120 / 6 24 120 720 / 24 120 720 5040 } and the determinant is 3456.
		

Crossrefs

Cf. A162014 and A055209. - Johannes W. Meijer, Jun 27 2009

Programs

  • Maple
    with(linalg): Digits := 500: A059332 := proc(n) local A, i, j: A := array(1..n,1..n): for i from 1 to n do for j from 1 to n do A[i,j] := (i+j-1)! od: od: RETURN(det(A)) end: for n from 1 to 20 do printf(`%d,`, A059332(n)) od;
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)*n!^2/n)
        end:
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 29 2020
  • Mathematica
    Table[n! BarnesG[n+1]^2, {n, 1, 10}] (* Jean-François Alcover, Sep 19 2016 *)
  • PARI
    A059332(n)=matdet(matrix(n,n,i,j,(i+j-1)!)) \\ M. F. Hasler, Nov 03 2013
    
  • PARI
    a(n) = 2^binomial(n,2)*prod(k=1,n-1, binomial(k+2,2)^(n-1-k)) \\ Ralf Stephan, Nov 04 2013
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def all_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            0.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
    puts all_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(n) = a(n-1)*(n!)*(n-1)! for n >= 2 so a(n) = product k=1, 2, ..., n k!*(k-1)!.
a(n) = 2^C(n,2)*Product_{k=1..(n-1), C(k+2,2)^(n-1-k)}. - Paul Barry, Jan 15 2009
a(n) = n!*product(k!, k=0..n-1)^2. - Johannes W. Meijer, Jun 27 2009
a(n) ~ (2*Pi)^(n+1/2) * exp(1/6 - n - 3*n^2/2) * n^(n^2 + n + 1/3) / A^2, where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 01 2015

Extensions

More terms from James Sellers, Jan 29 2001
Offset corrected. Comment and formula aligned with new offset by Johannes W. Meijer, Jun 24 2009
a(0)=1 prepended by Alois P. Heinz, Apr 08 2020