A059332 Determinant of n X n matrix A defined by A[i,j] = (i+j-1)! for 1 <= i,j <= n.
1, 1, 2, 24, 3456, 9953280, 859963392000, 3120635156889600000, 634153008009974906880000000, 9278496603801318870491332608000000000, 12218100099725239100847669366019325952000000000000, 1769792823810713244721831122736499011207487815680000000000000000
Offset: 0
Keywords
Examples
a(4) = 3456 because the relevant matrix is {1 2 6 24 / 2 6 24 120 / 6 24 120 720 / 24 120 720 5040 } and the determinant is 3456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..32
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Googology Wiki, Bouncing Factorial
Crossrefs
Programs
-
Maple
with(linalg): Digits := 500: A059332 := proc(n) local A, i, j: A := array(1..n,1..n): for i from 1 to n do for j from 1 to n do A[i,j] := (i+j-1)! od: od: RETURN(det(A)) end: for n from 1 to 20 do printf(`%d,`, A059332(n)) od; # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*n!^2/n) end: seq(a(n), n=0..12); # Alois P. Heinz, Apr 29 2020
-
Mathematica
Table[n! BarnesG[n+1]^2, {n, 1, 10}] (* Jean-François Alcover, Sep 19 2016 *)
-
PARI
A059332(n)=matdet(matrix(n,n,i,j,(i+j-1)!)) \\ M. F. Hasler, Nov 03 2013
-
PARI
a(n) = 2^binomial(n,2)*prod(k=1,n-1, binomial(k+2,2)^(n-1-k)) \\ Ralf Stephan, Nov 04 2013
-
Ruby
def mono_choices(a,b,n) n - [a,b].max end def all_mono_choices(n) accum =1 0.upto(n-1) do |i| 0.upto(n-1) do |j| accum = accum * mono_choices(i,j,n) end end accum end 1.upto(12) do |k| puts all_mono_choices(k) end # Chad Brewbaker, Nov 03 2013
Formula
a(n) = a(n-1)*(n!)*(n-1)! for n >= 2 so a(n) = product k=1, 2, ..., n k!*(k-1)!.
a(n) = 2^C(n,2)*Product_{k=1..(n-1), C(k+2,2)^(n-1-k)}. - Paul Barry, Jan 15 2009
a(n) = n!*product(k!, k=0..n-1)^2. - Johannes W. Meijer, Jun 27 2009
a(n) ~ (2*Pi)^(n+1/2) * exp(1/6 - n - 3*n^2/2) * n^(n^2 + n + 1/3) / A^2, where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 01 2015
Extensions
More terms from James Sellers, Jan 29 2001
Offset corrected. Comment and formula aligned with new offset by Johannes W. Meijer, Jun 24 2009
a(0)=1 prepended by Alois P. Heinz, Apr 08 2020
Comments