cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059338 a(n) = Sum_{k=1..n} k^5 * binomial(n,k).

Original entry on oeis.org

1, 34, 342, 2192, 11000, 47232, 181888, 646144, 2156544, 6848000, 20877824, 61526016, 176171008, 492126208, 1345536000, 3610247168, 9526771712, 24769069056, 63546720256, 161087488000, 403925630976, 1002841309184, 2467290939392, 6019866427392, 14575206400000, 35039249170432
Offset: 1

Views

Author

Pat Costello (matcostello(AT)acs.eku.edu), Jan 26 2001

Keywords

References

  • Finding a closed form for the sum was Problem 541 in the Fall 2000 issue of The Pentagon (official journal of Kappa Mu Epsilon).

Crossrefs

Binomial transform of A000584.

Programs

  • Maple
    with(combinat): for n from 1 to 70 do printf(`%d,`,sum(k^5*binomial(n,k), k=1..n)) od:
  • Mathematica
    Table[Sum[k^5*Binomial[n, k], {k,1,n}], {n,1,5}] (* or *) LinearRecurrence[{12, -60, 160, -240, 192, -64}, {1, 34, 342, 2192,
      11000, 47232}, 10] (* G. C. Greubel, Jan 07 2017 *)
  • PARI
    a(n) = { sum(k=1, n, k^5*binomial(n, k)) } \\ Harry J. Smith, Jun 26 2009
    
  • PARI
    Vec(x*(16*x^4-32*x^3-6*x^2+22*x+1)/(2*x-1)^6 + O(x^25)) \\ G. C. Greubel, Jan 07 2017

Formula

The closed form comes from starting with (1+x)^n and repeatedly differentiating and multiplying by x. After five differentiations, substitute x=1 and get a(n) = 2^(n-5)*n^2*(n^3+10n^2+15n-10).
G.f.: x*(16*x^4-32*x^3-6*x^2+22*x+1)/(2*x-1)^6. - Colin Barker, Sep 20 2012

Extensions

More terms from James Sellers, Jan 29 2001