cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059344 Triangle read by rows: row n consists of the nonzero coefficients of the expansion of 2^n x^n in terms of Hermite polynomials with decreasing subscripts.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 12, 12, 1, 20, 60, 1, 30, 180, 120, 1, 42, 420, 840, 1, 56, 840, 3360, 1680, 1, 72, 1512, 10080, 15120, 1, 90, 2520, 25200, 75600, 30240, 1, 110, 3960, 55440, 277200, 332640, 1, 132, 5940, 110880, 831600, 1995840, 665280, 1, 156
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			Triangle begins
  1;
  1;
  1,     2;
  1,     6;
  1,    12,    12;
  1,    20,    60;
  1,    30,   180,   120;
  1,    42,   420,   840;
  1,    56,   840,  3360,  1680;
  1,    72,  1512, 10080, 15120;
x^2 = 1/2^2*(Hermite(2,x)+2*Hermite(0,x)); x^3 = 1/2^3*(Hermite(3,x)+6*Hermite(1,x)); x^4 = 1/2^4*(Hermite(4,x)+12*Hermite(2,x)+12*Hermite(0,x)); x^5 = 1/2^5*(Hermite(5,x)+20*Hermite(3,x)+60*Hermite(1,x)); x^6 = 1/2^6*(Hermite(6,x)+30*Hermite(4,x)+180*Hermite(2,x)+120*Hermite(0,x)). - _Vladeta Jovovic_, Feb 21 2003
1 = H(0); 2x = H(1); 4x^2 = H(2)+2H(0); 8x^3 = H(3)+6H(1); etc. where H(k)=Hermite(k,x).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.

Crossrefs

Cf. A119275 (signed row reverse).

Programs

  • Mathematica
    Flatten[Table[n!/(k! * (n-2k)!), {n, 0, 13}, {k, 0, Floor[n/2]}]]
    (* Second program: *)
    row[n_] := Table[h[k], {k, n, Mod[n, 2], -2}] /. SolveAlways[2^n*x^n == Sum[h[k]*HermiteH[k, x], {k, Mod[n, 2], n, 2}], x] // First; Table[ row[n], {n, 0, 13}] // Flatten (* Jean-François Alcover, Jan 05 2016 *)
  • PARI
    for(n=0,25, for(k=0,floor(n/2), print1(n!/(k!*(n-2*k)!), ", "))) \\ G. C. Greubel, Jan 07 2017

Formula

E.g.f.: exp(x^2+y*x). - Vladeta Jovovic, Feb 21 2003
a(n, k) = n!/(k! (n-2k)!). - Dean Hickerson, Feb 24 2003

Extensions

More terms from Vladeta Jovovic, Feb 21 2003
Edited by Emeric Deutsch, Jun 05 2004