A118393
Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).
Original entry on oeis.org
1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0
-
function a(n)
if n eq 0 then return 1;
else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]);
end if; return a; end function;
[a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
-
A118393 := proc(n)
option remember;
if n <=1 then
1;
else
n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ;
end if;
end proc:
seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
-
a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
-
f=factorial;
def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2))
[a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
A001813
Quadruple factorial numbers: a(n) = (2n)!/n!.
Original entry on oeis.org
1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0
The following permutations of order 8 and their reversals have this property:
1 7 3 5 2 4 0 6
1 7 4 2 5 3 0 6
2 3 7 6 1 0 4 5
2 4 7 1 6 0 3 5
3 2 6 7 0 1 5 4
3 5 1 7 0 6 2 4
- D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Rosa Maria Pidatella, Hermite and Laguerre Functions: a Unifying Point of View, Università degli Studi di Catania, Sicily, Italy (2019).
- Murray Bremner and Martin Markl, Distributive laws between the Three Graces, arXiv:1809.08191 [math.AT], 2018.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155. - _N. J. A. Sloane_, Apr 18 2014
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Elliot J. Carr and Matthew J. Simpson, New homogenization approaches for stochastic transport through heterogeneous media, arXiv:1810.08890 [physics.bio-ph], 2018.
- W. Y. C. Chen, L. W. Shapiro and L. L. M. Young, Parity reversing involutions on plane trees and 2-Motzkin paths, arXiv:math/0503300 [math.CO], 2005.
- Ali Chouria, Vlad-Florin Drǎgoi, and Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- P. Cvitanovic, Group theory for Feynman diagrams in non-Abelian gauge theories, Phys. Rev. D14 (1976), 1536-1553.
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016. See p. 8.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 127
- S. Goodenough and C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv preprint arXiv:1404.1894 [cs.DM], 2014.
- S. Goodenough and C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 115
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin. 52 (2012), 41-54 (Theorem 1).
- Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
- Édouard Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 221.
- R. J. Marsh and P. P. Martin, Pascal arrays: counting Catalan sets, arXiv:math/0612572 [math.CO], 2006.
- Calin D. Morosan, On the number of broadcast schemes in networks, Information Processing Letters, Volume 100, Issue 5 (2006), 188-193.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
- J. Riordan, Letter to N. J. A. Sloane, Feb 03 1975 (with notes by njas)
- H. E. Salzer, Coefficients for expressing the first thirty powers in terms of the Hermite polynomials, Math. Comp., 3 (1948), 167-169.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
- Index to divisibility sequences
- Index entries for related partition-counting sequences
Cf.
A037224,
A048854,
A001147,
A007696,
A008545,
A122670 (essentially the same sequence),
A000165,
A047055,
A047657,
A084947,
A084948,
A084949,
A010050,
A000142,
A008275,
A000108,
A000984,
A008276,
A000680,
A094216.
Catalan(n-1)*M^(n-1)*n! for M=1,2,3,4,5,6:
A001813,
A052714 (or
A144828),
A221954,
A052734,
A221953,
A221955.
-
List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
-
[Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
-
A001813 := n->(2*n)!/n!;
A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
seq(A001813(n), n=0..16); # Peter Luschny, Jun 23 2011
-
Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
-
makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
-
first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
-
from math import factorial
def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
-
[binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
A059343
Triangle of nonzero coefficients of Hermite polynomials H_n(x) in increasing powers of x.
Original entry on oeis.org
1, 2, -2, 4, -12, 8, 12, -48, 16, 120, -160, 32, -120, 720, -480, 64, -1680, 3360, -1344, 128, 1680, -13440, 13440, -3584, 256, 30240, -80640, 48384, -9216, 512, -30240, 302400, -403200, 161280, -23040, 1024, -665280, 2217600, -1774080, 506880, -56320, 2048, 665280, -7983360, 13305600
Offset: 0
1; 2*x; -2+4*x^2; -12*x+8*x^3; ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020.
- Eric Weisstein's World of Mathematics, Hermite Polynomial
If initial zeros are included, same as
A060821.
-
with(orthopoly): h:=proc(n) if n mod 2=0 then expand(x^2*H(n,x)) else expand(x*H(n,x)) fi end: seq(seq(coeff(h(n),x^(2*k)),k=1..1+floor(n/2)),n=0..14); # this gives the signed sequence
-
Flatten[ Table[ Coefficient[ HermiteH[n, x], x, k], {n, 0, 12}, {k, Mod[n, 2], n, 2}]] (* Jean-François Alcover, Jan 23 2012 *)
-
from sympy import hermite, Poly, Symbol
x = Symbol('x')
def a(n):
return Poly(hermite(n, x), x).coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
A119275
Inverse of triangle related to Padé approximation of exp(x).
Original entry on oeis.org
1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0
Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
Cf.
A059344 (unsigned row reverse).
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
-
Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[inverse_bell_matrix from A265605]
# Unsigned values and an additional first column (1,0,0, ...).
multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015
A122832
Exponential Riordan array (e^(x(1+x)),x).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 25, 28, 18, 4, 1, 81, 125, 70, 30, 5, 1, 331, 486, 375, 140, 45, 6, 1, 1303, 2317, 1701, 875, 245, 63, 7, 1, 5937, 10424, 9268, 4536, 1750, 392, 84, 8, 1, 26785, 53433, 46908, 27804, 10206, 3150, 588, 108, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
7, 9, 3, 1;
25, 28, 18, 4, 1;
81, 125, 70, 30, 5, 1;
...
From _Peter Bala_, May 14 2012: (Start)
T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are:
{1}[2,3], {1}[3,2], {1}[2][3],
{2}[1,3], {2}[3,1], {2}[1][3],
{3}[1,2], {3}[2,1], {3}[1][2]. (End)
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ Michel Marcus, Aug 28 2017
A118394
Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0
Triangle begins:
1;
1;
1;
1, 6;
1, 24;
1, 60;
1, 120, 360;
1, 210, 2520;
1, 336, 10080;
1, 504, 30240, 60480;
1, 720, 75600, 604800;
1, 990, 166320, 3326400;
1, 1320, 332640, 13305600, 19958400;
...
-
F:= Factorial;
[F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
T[n_, k_] := n!/(k!(n-3k)!);
Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
-
T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
-
f=factorial;
flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A113216
Triangle of polynomials P(n,x) of degree n related to Pi (see comment) and derived from Padé approximation to exp(x).
Original entry on oeis.org
1, 1, 2, 1, -6, -12, 1, 12, -60, -120, 1, -20, -180, 840, 1680, 1, 30, -420, -3360, 15120, 30240, 1, -42, -840, 10080, 75600, -332640, -665280, 1, 56, -1512, -25200, 277200, 1995840, -8648640, -17297280, 1, -72, -2520, 55440, 831600, -8648640, -60540480, 259459200, 518918400, 1, 90, -3960, -110880
Offset: 0
P(5,x) = x^5 + 30*x^4 - 420*x^3 - 3360*x^2 + 15120*x + 30240.
Triangle begins:
1;
1,2;
1,-6,-12;
1,12,-60,-120;
1,-20,-180,840,1680;
1,30,-420,-3360,15120,30240;
1,-42,-840,10080,75600,-332640,-665280;
...
-
P(n,x)=if(n<2,if(n%2,x+2,1),(4*n-2)*P(n-1,x)-x^2*P(n-2,x))
-
P(n,x)=sum(i=0,n,x^i*(-1)^floor(i/2)/(n-i)!/i!*(2*n-i)!)
A135610
Triangle read by rows: the k-th entry of row n is the number of particular connectivity requirements that a k-linked graph with n >= 2k vertices has to satisfy T(n,k) = (1/2) * n!/(k!*(n-2*k)!) where k runs from 1 to floor(n/2).
Original entry on oeis.org
1, 3, 6, 6, 10, 30, 15, 90, 60, 21, 210, 420, 28, 420, 1680, 840, 36, 756, 5040, 7560, 45, 1260, 12600, 37800, 15120, 55, 1980, 27720, 138600, 166320, 66, 2970, 55440, 415800, 997920, 332640, 78, 4290, 102960, 1081080, 4324320, 4324320, 91, 6006
Offset: 1
Peter C. Heinig (algorithms(AT)gmx.de), Feb 27 2008
If n=4 and k=1, then (1/2)*C(4,1)*C(4-1,1)*1! = 6, so there are 6 particular connectivity requirements that a 1-linked graph with 4 vertices has to satisfy.
If n=4 and k=2, then (1/2)*C(4,2)*C(4-2,2)*2! = 6, so there are again 6 particular connectivity requirements that a 2-linked graph with 4 vertices has to satisfy.
Triangle begins:
1;
3;
6, 6;
10, 30;
15, 90, 60;
21, 210, 420;
28, 420, 1680, 840;
36, 756, 5040, 7560;
45, 1260, 12600, 37800, 15120;
..
- R. Diestel, Graph Theory, 3rd edition, Springer 2005 (Chapter 3.5).
This is
A059344/2 without column k=0.
Showing 1-8 of 8 results.
Comments