cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118393 Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).

Original entry on oeis.org

1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of A059344 is: exp(x+y*x^2). More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A059344, variants: A118395, A118930.

Programs

  • Magma
    function a(n)
      if n eq 0 then return 1;
      else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]);
      end if; return a; end function;
    [a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118393 := proc(n)
        option remember;
        if n <=1 then
            1;
        else
            n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ;
        end if;
    end proc:
    seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
  • PARI
    a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
    
  • Sage
    f=factorial;
    def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2))
    [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
    

Formula

a(n) = Sum_{k=0..[n/2]} n!/k!/(n-2*k)! *a(k) for n>=0, with a(0)=1.

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A059343 Triangle of nonzero coefficients of Hermite polynomials H_n(x) in increasing powers of x.

Original entry on oeis.org

1, 2, -2, 4, -12, 8, 12, -48, 16, 120, -160, 32, -120, 720, -480, 64, -1680, 3360, -1344, 128, 1680, -13440, 13440, -3584, 256, 30240, -80640, 48384, -9216, 512, -30240, 302400, -403200, 161280, -23040, 1024, -665280, 2217600, -1774080, 506880, -56320, 2048, 665280, -7983360, 13305600
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; 2*x; -2+4*x^2; -12*x+8*x^3; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.

Crossrefs

Cf. A059344.
If initial zeros are included, same as A060821.

Programs

  • Maple
    with(orthopoly): h:=proc(n) if n mod 2=0 then expand(x^2*H(n,x)) else expand(x*H(n,x)) fi end: seq(seq(coeff(h(n),x^(2*k)),k=1..1+floor(n/2)),n=0..14); # this gives the signed sequence
  • Mathematica
    Flatten[ Table[ Coefficient[ HermiteH[n, x], x, k], {n, 0, 12}, {k, Mod[n, 2], n, 2}]] (* Jean-François Alcover, Jan 23 2012 *)
  • Python
    from sympy import hermite, Poly, Symbol
    x = Symbol('x')
    def a(n):
        return Poly(hermite(n, x), x).coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017

Extensions

Edited by Emeric Deutsch, Jun 05 2004

A119275 Inverse of triangle related to Padé approximation of exp(x).

Original entry on oeis.org

1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0

Views

Author

Paul Barry, May 12 2006

Keywords

Comments

Inverse of A119274.
Row sums are (-1)^(n+1)*A000321(n+1).
Bell polynomials of the second kind B(n,k)(1,-2). - Vladimir Kruchinin, Mar 25 2011
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) giving unsigned values and adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
		

Crossrefs

Cf. A059344 (unsigned row reverse).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_matrix from A265605]
    # Unsigned values and an additional first column (1,0,0, ...).
    multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015

Formula

T(n,k) = [k<=n]*(-1)^(n-k)*(n-k)!*C(n+1,k+1)*C(k+1,n-k).
From Peter Bala, May 07 2012: (Start)
E.g.f.: exp(x*(t-t^2)) - 1 = x*t + (-2*x+x^2)*t^2/2! + (-6*x^2+x^3)*t^3/3! + (12*x^2-12*x^3+x^4)*t^4/4! + .... Cf. A059344. Let D denote the operator sum {k >= 0} (-1)^k/k!*x^k*(d/dx)^(2*k). The n-th row polynomial R(n,x) = D(x^n) and satisfies the recurrence equation R(n+1,x) = x*R(n,x)-2*n*x*R(n-1,x). The e.g.f. equals D(exp(x*t)).
(End)
From Tom Copeland, Oct 11 2016: (Start)
With initial index n = 1 and unsigned, these are the partition row polynomials of A130561 and A231846 with c_1 = c_2 = x and c_n = 0 otherwise. The first nonzero, unsigned element of each diagonal is given by A001813 (for each row, A001815) and dividing along the corresponding diagonal by this element generates A098158 with its first column removed (cf. A034839 and A086645).
The n-th polynomial is generated by (x - 2y d/dx)^n acting on 1 and then evaluated at y = x, e.g., (x - 2y d/dx)^2 1 = (x - 2y d/dx) x = x^2 - 2y evaluated at y = x gives p_2(x) = -2x + x^2.
(End)

A122832 Exponential Riordan array (e^(x(1+x)),x).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 25, 28, 18, 4, 1, 81, 125, 70, 30, 5, 1, 331, 486, 375, 140, 45, 6, 1, 1303, 2317, 1701, 875, 245, 63, 7, 1, 5937, 10424, 9268, 4536, 1750, 392, 84, 8, 1, 26785, 53433, 46908, 27804, 10206, 3150, 588, 108, 9, 1
Offset: 0

Views

Author

Paul Barry, Sep 12 2006

Keywords

Comments

Row sums are A000898. Inverse is A122833. Product of A007318 and A067147.

Examples

			Triangle begins:
   1;
   1,   1;
   3,   2,  1;
   7,   9,  3,  1;
  25,  28, 18,  4, 1;
  81, 125, 70, 30, 5, 1;
  ...
From _Peter Bala_, May 14 2012: (Start)
T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are:
{1}[2,3], {1}[3,2], {1}[2][3],
{2}[1,3], {2}[3,1], {2}[1][3],
{3}[1,2], {3}[2,1], {3}[1][2]. (End)
		

Crossrefs

A000898 (row sums), A047974 (column 0), A291632 (column 1), A122833 (inverse array).

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ Michel Marcus, Aug 28 2017

Formula

Number triangle T(n,k) = (n!/k!)*Sum_{i = 0..n-k} C(i,n-k-i)/i!.
From Peter Bala, May 14 2012: (Start)
Array is exp(S + S^2) where S is A132440 the infinitesimal generator for Pascal's triangle.
T(n,k) = binomial(n,k)*A047974(n-k).
So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists of length 1 or 2. (End)
From Peter Bala, Oct 24 2023: (Start)
n-th row polynomial: R(n,x) = exp(D + D^2) (x^n) = exp(D^2) (1 + x)^n, where D denotes the derivative operator d/dx. Cf. A111062.
The sequence of polynomials defined by R(n,x-1) = exp(D^2) (x^n) begins [1, 1, 2 + x^2, 6*x + x^3, 12 + 12*x^2 + x^4, ...] and is related to the Hermite polynomials. See A059344. (End)

Extensions

More terms from Michel Marcus, Aug 28 2017

A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

Row sums form A118395.
Eigenvector is A118396.

Examples

			Triangle begins:
  1;
  1;
  1;
  1,    6;
  1,   24;
  1,   60;
  1,  120,    360;
  1,  210,   2520;
  1,  336,  10080;
  1,  504,  30240,    60480;
  1,  720,  75600,   604800;
  1,  990, 166320,  3326400;
  1, 1320, 332640, 13305600, 19958400;
  ...
		

Crossrefs

Cf. A118395 (row sums), A118396 (eigenvector).
Variants: A059344, A118931.

Programs

  • Magma
    F:= Factorial;
    [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_] := n!/(k!(n-3k)!);
    Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
  • PARI
    T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
    
  • Sage
    f=factorial;
    flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3).

A113216 Triangle of polynomials P(n,x) of degree n related to Pi (see comment) and derived from Padé approximation to exp(x).

Original entry on oeis.org

1, 1, 2, 1, -6, -12, 1, 12, -60, -120, 1, -20, -180, 840, 1680, 1, 30, -420, -3360, 15120, 30240, 1, -42, -840, 10080, 75600, -332640, -665280, 1, 56, -1512, -25200, 277200, 1995840, -8648640, -17297280, 1, -72, -2520, 55440, 831600, -8648640, -60540480, 259459200, 518918400, 1, 90, -3960, -110880
Offset: 0

Views

Author

Benoit Cloitre, Jan 07 2006

Keywords

Comments

P(n,x) is a sequence of polynomials of degree n with integer coefficients, having exactly n real roots, such that r(n) the smallest root (in absolute value) converges quickly to Pi/2. e.g. the appropriate root for P(5,x) is r(5)=1.5707963(4026....) . To see the rapidity of convergence it is relevant noting that (r(n)-Pi/2)(2n)! -->0 as n grows.

Examples

			P(5,x) = x^5 + 30*x^4 - 420*x^3 - 3360*x^2 + 15120*x + 30240.
Triangle begins:
1;
1,2;
1,-6,-12;
1,12,-60,-120;
1,-20,-180,840,1680;
1,30,-420,-3360,15120,30240;
1,-42,-840,10080,75600,-332640,-665280;
...
		

Crossrefs

Cf. A113025 (unsigned variant), A048854, A059344, A119274.

Programs

  • PARI
    P(n,x)=if(n<2,if(n%2,x+2,1),(4*n-2)*P(n-1,x)-x^2*P(n-2,x))
    
  • PARI
    P(n,x)=sum(i=0,n,x^i*(-1)^floor(i/2)/(n-i)!/i!*(2*n-i)!)

Formula

P(0, x) = 1, P(1, x) = x+2, P(n, x) = (4*n-2)*P(n-1, x)-x^2*P(n-2, x).
P(n, x) = Sum_{0<=i<=n} (-1)^floor(i/2)*(2n-i)!/i!/(n-i)!*x^i.

A135610 Triangle read by rows: the k-th entry of row n is the number of particular connectivity requirements that a k-linked graph with n >= 2k vertices has to satisfy T(n,k) = (1/2) * n!/(k!*(n-2*k)!) where k runs from 1 to floor(n/2).

Original entry on oeis.org

1, 3, 6, 6, 10, 30, 15, 90, 60, 21, 210, 420, 28, 420, 1680, 840, 36, 756, 5040, 7560, 45, 1260, 12600, 37800, 15120, 55, 1980, 27720, 138600, 166320, 66, 2970, 55440, 415800, 997920, 332640, 78, 4290, 102960, 1081080, 4324320, 4324320, 91, 6006
Offset: 1

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Feb 27 2008

Keywords

Comments

A graph G with n >= 2k vertices is k-linked if and only if for every choice of two disjoint sets of vertices, each having cardinality k, and for every numbering {s_1,...,s_k} and {t_1,...,t_k} of the vertices in the respective sets, there exist k disjoint paths P_1,...,P_k in G such that P_j starts at s_j and ends at t_j. Note that k is at most floor(n/2).
Being k-linked is a considerably stronger property of graph than being merely k-connected and this sequence is a superficial quantitative answer to the question of how much stronger a property it is. For graph-theoretical answers to how connectedness and linkedness are related, see the references.
The sequence arises as follows. Let a particular connectivity requirement consist of a choice of two vertex sets as described above, together with a particular numbering of the respective elements in the sets, i.e., together with a prescription which vertex has to be linked to which. The set of all such particular connectivity requirements can be constructed as follows.
First pick a set of k vertices, then pick another set of vertices among the remaining n-k vertices of G and then, going along the vertices in the first set in an arbitrary order, successively prescribe what vertex it is to be linked to. For the first prescription there are k possibilities, for the next k-1, etc., so clearly, since there are no dependencies, for a fixed choice of two vertex sets there are k! prescriptions. It is clear that in this process every possible particular connectivity requirement arises exactly twice, since there are two possibilities to choose the first of the two k-element sets. Thus there are (1/2) * C(n,k) * C(n-k, k) * k! = (1/2) * n!/(k!*(n-2*k)!) particular connectivity requirements.

Examples

			If n=4 and k=1, then (1/2)*C(4,1)*C(4-1,1)*1! = 6, so there are 6 particular connectivity requirements that a 1-linked graph with 4 vertices has to satisfy.
If n=4 and k=2, then (1/2)*C(4,2)*C(4-2,2)*2! = 6, so there are again 6 particular connectivity requirements that a 2-linked graph with 4 vertices has to satisfy.
Triangle begins:
   1;
   3;
   6,    6;
  10,   30;
  15,   90,    60;
  21,  210,   420;
  28,  420,  1680,   840;
  36,  756,  5040,  7560;
  45, 1260, 12600, 37800, 15120;
  ..
		

References

  • R. Diestel, Graph Theory, 3rd edition, Springer 2005 (Chapter 3.5).

Crossrefs

This is A059344/2 without column k=0.
Cf. A000407.

Programs

  • Maple
    seq(seq(n!/(k!*(n-2*k)!)/2, k=1..floor(n/2)), n=1..20);

Formula

T(n, k) = (1/2) * n!/(k!*(n-2*k)!).
Showing 1-8 of 8 results.