cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 30 2001

Keywords

Comments

Exponential Riordan array [exp(-x^2), 2x]. - Paul Barry, Jan 22 2009

Examples

			[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
     1;
     0,     2;
    -2,     0,      4;
     0,   -12,      0,      8;
    12,     0,    -48,      0,      16;
     0,   120,      0,   -160,       0,    32;
  -120,     0,    720,      0,    -480,     0,     64;
     0, -1680,      0,   3360,       0, -1344,      0,   128;
  1680,     0, -13440,      0,   13440,     0,  -3584,     0,    256;
     0, 30240,      0, -80640,       0, 48384,      0, -9216,      0, 512;
-30240,     0, 302400,      0, -403200,     0, 161280,     0, -23040,   0, 1024;
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.

Crossrefs

Cf. A001814, A001816, A000321, A062267 (row sums).
Without initial zeros, same as A059343.

Programs

  • Maple
    with(orthopoly):for n from 0 to 10 do H(n,x):od;
    T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
    (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
  • PARI
    for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import hermite, Poly, symbols
    x = symbols('x')
    def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 2**n
        for k in range(n - 2, -1, -2):
            row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
        return row  # Peter Luschny, Jan 08 2023

Formula

T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0.
E.g.f.: exp(-y^2 + 2*y*x).
From Paul Barry, Aug 28 2005: (Start)
T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2;
T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2.
(End)
Row sums: A062267. - Derek Orr, Mar 12 2015
a(n*(n+3)/2) = a(A000096(n)) = 2^n. - Derek Orr, Mar 12 2015
Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - Ralf Stephan, Mar 26 2016
The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - Richard Turk, Aug 20 2017

A099174 Triangle read by rows: coefficients of modified Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 15, 0, 10, 0, 1, 15, 0, 45, 0, 15, 0, 1, 0, 105, 0, 105, 0, 21, 0, 1, 105, 0, 420, 0, 210, 0, 28, 0, 1, 0, 945, 0, 1260, 0, 378, 0, 36, 0, 1, 945, 0, 4725, 0, 3150, 0, 630, 0, 45, 0, 1, 0, 10395, 0, 17325, 0, 6930, 0, 990, 0, 55, 0, 1
Offset: 0

Views

Author

Ralf Stephan, on a suggestion of Karol A. Penson, Oct 13 2004

Keywords

Comments

Absolute values of A066325.
T(n,k) is the number of involutions of {1,2,...,n}, having k fixed points (0 <= k <= n). Example: T(4,2)=6 because we have 1243,1432,1324,4231,3214 and 2134. - Emeric Deutsch, Oct 14 2006
Riordan array [exp(x^2/2),x]. - Paul Barry, Nov 06 2008
Same as triangle of Bessel numbers of second kind, B(n,k) (see Cheon et al., 2013). - N. J. A. Sloane, Sep 03 2013
The modified Hermite polynomial h(n,x) (as in the Formula section) is the numerator of the rational function given by f(n,x) = x + (n-2)/f(n-1,x), where f(x,0) = 1. - Clark Kimberling, Oct 20 2014
Second lower diagonal T(n,n-2) equals positive triangular numbers A000217 \ {0}. - M. F. Hasler, Oct 23 2014
From James East, Aug 17 2015: (Start)
T(n,k) is the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the Brauer monoid of degree n.
For n < k with n == k (mod 2), T(n,k) is the rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of the ideal consisting of all rank <= k elements of the Brauer monoid. (End)
This array provides the coefficients of a Laplace-dual sequence H(n,x) of the Dirac delta function, delta(x), and its derivatives, formed by taking the inverse Laplace transform of these modified Hermite polynomials. H(n,x) = h(n,D) delta(x) with h(n,x) as in the examples and the lowering and raising operators L = -x and R = -x + D = -x + d/dx such that L H(n,x) = n * H(n-1,x) and R H(n,x) = H(n+1,x). The e.g.f. is exp[t H(.,x)] = e^(t^2/2) e^(t D) delta(x) = e^(t^2/2) delta(x+t). - Tom Copeland, Oct 02 2016
Antidiagonals of this entry are rows of A001497. - Tom Copeland, Oct 04 2016
This triangle is the reverse of that in Table 2 on p. 7 of the Artioli et al. paper and Table 6.2 on p. 234 of Licciardi's thesis, with associations to the telephone numbers. - Tom Copeland, Jun 18 2018 and Jul 08 2018
See A344678 for connections to a Heisenberg-Weyl algebra of differential operators, matching and independent edge sets of the regular n-simplices with partially labeled vertices, and telephone switchboard scenarios. - Tom Copeland, Jun 02 2021

Examples

			h(0,x) = 1
h(1,x) = x
h(2,x) = x^2 + 1
h(3,x) = x^3 + 3*x
h(4,x) = x^4 + 6*x^2 + 3
h(5,x) = x^5 + 10*x^3 + 15*x
h(6,x) = x^6 + 15*x^4 + 45*x^2 + 15
From _Paul Barry_, Nov 06 2008: (Start)
Triangle begins
   1,
   0,  1,
   1,  0,  1,
   0,  3,  0,  1,
   3,  0,  6,  0,  1,
   0, 15,  0, 10,  0,  1,
  15,  0, 45,  0, 15,  0,  1
Production array starts
  0, 1,
  1, 0, 1,
  0, 2, 0, 1,
  0, 0, 3, 0, 1,
  0, 0, 0, 4, 0, 1,
  0, 0, 0, 0, 5, 0, 1 (End)
		

Crossrefs

Row sums (polynomial values at x=1) are A000085.
Polynomial values: A005425 (x=2), A202834 (x=3), A202879(x=4).
Cf. A137286.
Cf. A001497.

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then n!/2^((n-k)/2)/((n-k)/2)!/k! else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 14 2006
  • Mathematica
    nn=10;a=y x+x^2/2!;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, May 08 2012 *)
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x]-(n-1)* H[n-2, x]; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten // Abs (* Jean-François Alcover, May 23 2016 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[HermiteH[n, x I/Sqrt[2]] (Sqrt[1/2]/I)^n, x, k]]; (* Michael Somos, May 10 2019 *)
  • PARI
    T(n,k)=if(k<=n && k==Mod(n,2), n!/k!/(k=(n-k)/2)!>>k) \\ M. F. Hasler, Oct 23 2014
    
  • Python
    import sympy
    from sympy import Poly
    from sympy.abc import x, y
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return [abs(cf) for cf in Poly(H(n, x), x).all_coeffs()[::-1]]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 1
        for k in range(n - 2, -1, -2):
            row[k] = (row[k + 2] * (k + 2) * (k + 1)) // (n - k)
        return row  # Peter Luschny, Jan 08 2023
  • Sage
    def A099174_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*M[n-1,k+1]
        return M
    A099174_triangle(9)  # Peter Luschny, Oct 06 2012
    

Formula

h(k, x) = (-I/sqrt(2))^k * H(k, I*x/sqrt(2)), H(n, x) the Hermite polynomials (A060821, A059343).
T(n,k) = n!/(2^((n-k)/2)*((n-k)/2)!k!) if n-k >= 0 is even; 0 otherwise. - Emeric Deutsch, Oct 14 2006
G.f.: 1/(1-x*y-x^2/(1-x*y-2*x^2/(1-x*y-3*x^2/(1-x*y-4*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
E.g.f.: exp(y*x + x^2/2). - Geoffrey Critzer, May 08 2012
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n >= 1 T(n,k) = T(n-1,k-1) + (k+1)*T(n-1,k+1). - Peter Luschny, Oct 06 2012
T(n+2,n) = A000217(n+1), n >= 0. - M. F. Hasler, Oct 23 2014
The row polynomials P(n,x) = (a. + x)^n, umbrally evaluated with (a.)^n = a_n = aerated A001147, are an Appell sequence with dP(n,x)/dx = n * P(n-1,x). The umbral compositional inverses (cf. A001147) of these polynomials are given by the same polynomials signed, A066325. - Tom Copeland, Nov 15 2014
From Tom Copeland, Dec 13 2015: (Start)
The odd rows are (2x^2)^n x n! L(n,-1/(2x^2),1/2), and the even, (2x^2)^n n! L(n,-1/(2x^2),-1/2) in sequence with n= 0,1,2,... and L(n,x,a) = Sum_{k=0..n} binomial(n+a,k+a) (-x)^k/k!, the associated Laguerre polynomial of order a. The odd rows are related to A130757, and the even to A176230 and A176231. Other versions of this entry are A122848, A049403, A096713 and A104556, and reversed A100861, A144299, A111924. With each non-vanishing diagonal divided by its initial element A001147(n), this array becomes reversed, aerated A034839.
Create four shift and stretch matrices S1,S2,S3, and S4 with all elements zero except S1(2n,n) = 1 for n >= 1, S2(n,2n) = 1 for n >= 0, S3(2n+1,n) = 1 for n >= 1, and S4(n,2n+1) = 1 for n >= 0. Then this entry's lower triangular matrix is T = Id + S1 * (A176230-Id) * S2 + S3 * (unsigned A130757-Id) * S4 with Id the identity matrix. The sandwiched matrices have infinitesimal generators with the nonvanishing subdiagonals A000384(n>0) and A014105(n>0).
As an Appell sequence, the lowering and raising operators are L = D and R = x + dlog(exp(D^2/2))/dD = x + D, where D = d/dx, L h(n,x) = n h(n-1,x), and R h(n,x) = h(n+1,x), so R^n 1 = h(n,x). The fundamental moment sequence has the e.g.f. e^(t^2/2) with coefficients a(n) = aerated A001147, i.e., h(n,x) = (a. + x)^n, as noted above. The raising operator R as a matrix acting on o.g.f.s (formal power series) is the transpose of the production matrix P below, i.e., (1,x,x^2,...)(P^T)^n (1,0,0,...)^T = h(n,x).
For characterization as a Riordan array and associations to combinatorial structures, see the Barry link and the Yang and Qiao reference. For relations to projective modules, see the Sazdanovic link.
(End)
From the Appell formalism, e^(D^2/2) x^n = h_n(x), the n-th row polynomial listed below, and e^(-D^2/2) x^n = u_n(x), the n-th row polynomial of A066325. Then R = e^(D^2/2) * x * e^(-D^2/2) is another representation of the raising operator, implied by the umbral compositional inverse relation h_n(u.(x)) = x^n. - Tom Copeland, Oct 02 2016
h_n(x) = p_n(x-1), where p_n(x) are the polynomials of A111062, related to the telephone numbers A000085. - Tom Copeland, Jun 26 2018
From Tom Copeland, Jun 06 2021: (Start)
In the power basis x^n, the matrix infinitesimal generator M = A132440^2/2, when acting on a row vector for an o.g.f., is the matrix representation for the differential operator D^2/2.
e^{M} gives the coefficients of the Hermite polynomials of this entry.
The only nonvanishing subdiagonal of M, the second subdiagonal (1,3,6,10,...), gives, aside from the initial 0, the triangular numbers A000217, the number of edges of the n-dimensional simplices with (n+1) vertices. The perfect matchings of these simplices are the aerated odd double factorials A001147 noted above, the moments for the Hermite polynomials.
The polynomials are also generated from A036040 with x[1] = x, x[2] = 1, and the other indeterminates equal to zero. (End)

A059344 Triangle read by rows: row n consists of the nonzero coefficients of the expansion of 2^n x^n in terms of Hermite polynomials with decreasing subscripts.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 12, 12, 1, 20, 60, 1, 30, 180, 120, 1, 42, 420, 840, 1, 56, 840, 3360, 1680, 1, 72, 1512, 10080, 15120, 1, 90, 2520, 25200, 75600, 30240, 1, 110, 3960, 55440, 277200, 332640, 1, 132, 5940, 110880, 831600, 1995840, 665280, 1, 156
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			Triangle begins
  1;
  1;
  1,     2;
  1,     6;
  1,    12,    12;
  1,    20,    60;
  1,    30,   180,   120;
  1,    42,   420,   840;
  1,    56,   840,  3360,  1680;
  1,    72,  1512, 10080, 15120;
x^2 = 1/2^2*(Hermite(2,x)+2*Hermite(0,x)); x^3 = 1/2^3*(Hermite(3,x)+6*Hermite(1,x)); x^4 = 1/2^4*(Hermite(4,x)+12*Hermite(2,x)+12*Hermite(0,x)); x^5 = 1/2^5*(Hermite(5,x)+20*Hermite(3,x)+60*Hermite(1,x)); x^6 = 1/2^6*(Hermite(6,x)+30*Hermite(4,x)+180*Hermite(2,x)+120*Hermite(0,x)). - _Vladeta Jovovic_, Feb 21 2003
1 = H(0); 2x = H(1); 4x^2 = H(2)+2H(0); 8x^3 = H(3)+6H(1); etc. where H(k)=Hermite(k,x).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.

Crossrefs

Cf. A119275 (signed row reverse).

Programs

  • Mathematica
    Flatten[Table[n!/(k! * (n-2k)!), {n, 0, 13}, {k, 0, Floor[n/2]}]]
    (* Second program: *)
    row[n_] := Table[h[k], {k, n, Mod[n, 2], -2}] /. SolveAlways[2^n*x^n == Sum[h[k]*HermiteH[k, x], {k, Mod[n, 2], n, 2}], x] // First; Table[ row[n], {n, 0, 13}] // Flatten (* Jean-François Alcover, Jan 05 2016 *)
  • PARI
    for(n=0,25, for(k=0,floor(n/2), print1(n!/(k!*(n-2*k)!), ", "))) \\ G. C. Greubel, Jan 07 2017

Formula

E.g.f.: exp(x^2+y*x). - Vladeta Jovovic, Feb 21 2003
a(n, k) = n!/(k! (n-2k)!). - Dean Hickerson, Feb 24 2003

Extensions

More terms from Vladeta Jovovic, Feb 21 2003
Edited by Emeric Deutsch, Jun 05 2004

A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 08 2016

Keywords

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.
		

Crossrefs

Cf. A059343, A277280 (with signs).

Programs

  • Mathematica
    Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
  • PARI
    a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016
    
  • Python
    from sympy import hermite, Poly
    def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017

A277280 Maximal coefficient in Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 08 2016

Keywords

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
		

Crossrefs

Cf. A059343, A277281 (ignoring signs).

Programs

  • Mathematica
    Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
  • PARI
    a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
    
  • Python
    from sympy import hermite, Poly
    def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017

A163322 The 3rd Hermite Polynomial evaluated at n: H_3(n) = 8*n^3 - 12*n.

Original entry on oeis.org

0, -4, 40, 180, 464, 940, 1656, 2660, 4000, 5724, 7880, 10516, 13680, 17420, 21784, 26820, 32576, 39100, 46440, 54644, 63760, 73836, 84920, 97060, 110304, 124700, 140296, 157140, 175280, 194764, 215640, 237956, 261760, 287100, 314024, 342580
Offset: 0

Views

Author

Vincenzo Librandi, Jul 25 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 8*n^3 - 12*n.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: -4*x*(1-14*x+x^2)/(x-1)^4.

Extensions

Edited by R. J. Mathar, Jul 26 2009

A163323 The 4th Hermite Polynomial evaluated at n: H_4(n) = 16n^4 - 48n^2 + 12.

Original entry on oeis.org

12, -20, 76, 876, 3340, 8812, 19020, 36076, 62476, 101100, 155212, 228460, 324876, 448876, 605260, 799212, 1036300, 1322476, 1664076, 2067820, 2540812, 3090540, 3724876, 4452076, 5280780, 6220012, 7279180, 8468076, 9796876, 11276140
Offset: 0

Views

Author

Vincenzo Librandi, Jul 25 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 16*n^4 - 48*n^2 + 12.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*(-3 +20*x -74*x^2 -44*x^3 +5*x^4)/(x-1)^5.
H_(m+1)(x) = 2*x*H_m(x) - 2*m*H_(m-1)(x), with H_0(x)=1, H_1(x)=2x.

Extensions

Edited by R. J. Mathar, Jul 26 2009

A277378 Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).

Original entry on oeis.org

1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
    With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)

Formula

E.g.f.: exp(2*x/(1-x))/sqrt(1-x^2).
a(n) = |H_n(i)|^2 / 2^n = H_n(i) * H_n(-i) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+2)*(a(n) + n*a(n-1)) = a(n+1) + n*(n-1)^2*a(n-2).
a(n) ~ n^n / (2 * exp(1 - 2*sqrt(2*n) + n)) * (1 + 2*sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2021

A185296 Triangle of connection constants between the falling factorials (x)(n) and (2*x)(n).

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512
Offset: 0

Views

Author

Peter Bala, Feb 20 2011

Keywords

Comments

The falling factorial polynomials (x)_n := x*(x-1)*...*(x-n+1), n = 0,1,2,..., form a basis for the space of polynomials. Hence the polynomial (2*x)_n may be expressed as a linear combination of x_0, x_1,...,x_n; the coefficients in the expansion form the n-th row of the table. Some examples are given below.
This triangle is connected to two families of orthogonal polynomials, the Hermite polynomials H(n,x) A060821, and the Bessel polynomials y(n,x)A001498. The first few Hermite polynomials are
... H(0,x) = 1
... H(1,x) = 2*x
... H(2,x) = -2+4*x^2
... H(3,x) = -12*x+8*x^3
... H(4,x) = 12-48*x^2+16*x^4.
The unsigned coefficients of H(n,x) give the nonzero entries of the n-th row of the triangle.
The Bessel polynomials y(n,x) begin
... y(0,x) = 1
... y(1,x) = 1+x
... y(2,x) = 1+3*x+3*x^2
... y(3,x) = 1+6*x+15*x^2+15*x^3.
The entries in the n-th column of this triangle are the coefficients of the scaled Bessel polynomials 2^n*y(n,x).
Also the Bell transform of g(n) = 2 if n<2 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins
n\k|...0.....1.....2.....3.....4.....5.....6
============================================
0..|...1
1..|...0.....2
2..|...0.....2.....4
3..|...0.....0....12.....8
4..|...0.....0....12....48....16
5..|...0.....0.....0...120...160....32
6..|...0.....0.....0...120...720...480....64
..
Row 3:
(2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1).
Row 4:
(2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) +
48*x*(x-1)*(x-2)+ 12*x*(x-1).
Examples of recurrence relation
T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16;
T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160;
T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720;
T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.

Crossrefs

Cf. A000898 (row sums), A001498, A001515, A059343, A060821.

Programs

  • Maple
    T := (n,k) -> (n!/k!)*binomial(k,n-k)*2^(2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016

Formula

Defining relation: 2*x*(2*x-1)*...*(2*x-n+1) = sum {k=0..n} T(n, k)*x*(x-1)*...*(x-k+1)
Explicit formula: T(n,k) = (n!/k!)*binomial(k,n-k)*2^(2*k-n). [As defined by Comtet (see reference).]
Recurrence relation: T(n,k) = (2*k-n+1)*T(n-1,k)+2*T(n-1,k-1).
E.g.f.: exp(x*(t^2+2*t)) = 1 + (2*x)*t + (2*x+4*x^2)*t^2/2! + (12*x^2+8*x^3)*t^3/3! + ...
O.g.f. for m-th diagonal (starting at main diagonal m = 0): (2*m)!/m!*x^m/(1-2*x)^(2*m+1).
The triangle is the matrix product [2^k*s(n,k)]n,k>=0 * ([s(n,k)]n,k>=0)^(-1),
where s(n,k) denotes the signed Stirling number of the first kind.
Row sums are [1,2,6,20,76,...] = A000898.
Column sums are [1,4,28,296,...] = [2^n*A001515(n)] n>=0.

A277379 E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Comments

Is this the same as A227545 (at least for n>=1)?

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]

Formula

a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3).
a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - Vaclav Kotesovec, Oct 14 2016
Showing 1-10 of 11 results. Next