A060821
Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0
[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
1;
0, 2;
-2, 0, 4;
0, -12, 0, 8;
12, 0, -48, 0, 16;
0, 120, 0, -160, 0, 32;
-120, 0, 720, 0, -480, 0, 64;
0, -1680, 0, 3360, 0, -1344, 0, 128;
1680, 0, -13440, 0, 13440, 0, -3584, 0, 256;
0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512;
-30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024;
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801.
- Taekyun Kim and Dae San Kim, A note on Hermite polynomials, arXiv:1602.04096 [math.NT], 2016.
- Alexander Minakov, Question about integral of product of four Hermite polynomials integrated with squared weight, arXiv:1911.03942 [math.CO], 2019.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to Hermite polynomials.
Without initial zeros, same as
A059343.
-
with(orthopoly):for n from 0 to 10 do H(n,x):od;
T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
# Alternative:
T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
(T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
-
Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
-
for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
-
from sympy import hermite, Poly, symbols
x = symbols('x')
def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
def Trow(n: int) -> list[int]:
row: list[int] = [0] * (n + 1); row[n] = 2**n
for k in range(n - 2, -1, -2):
row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
return row # Peter Luschny, Jan 08 2023
A099174
Triangle read by rows: coefficients of modified Hermite polynomials.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 15, 0, 10, 0, 1, 15, 0, 45, 0, 15, 0, 1, 0, 105, 0, 105, 0, 21, 0, 1, 105, 0, 420, 0, 210, 0, 28, 0, 1, 0, 945, 0, 1260, 0, 378, 0, 36, 0, 1, 945, 0, 4725, 0, 3150, 0, 630, 0, 45, 0, 1, 0, 10395, 0, 17325, 0, 6930, 0, 990, 0, 55, 0, 1
Offset: 0
h(0,x) = 1
h(1,x) = x
h(2,x) = x^2 + 1
h(3,x) = x^3 + 3*x
h(4,x) = x^4 + 6*x^2 + 3
h(5,x) = x^5 + 10*x^3 + 15*x
h(6,x) = x^6 + 15*x^4 + 45*x^2 + 15
From _Paul Barry_, Nov 06 2008: (Start)
Triangle begins
1,
0, 1,
1, 0, 1,
0, 3, 0, 1,
3, 0, 6, 0, 1,
0, 15, 0, 10, 0, 1,
15, 0, 45, 0, 15, 0, 1
Production array starts
0, 1,
1, 0, 1,
0, 2, 0, 1,
0, 0, 3, 0, 1,
0, 0, 0, 4, 0, 1,
0, 0, 0, 0, 5, 0, 1 (End)
- Alois P. Heinz, Rows n = 0..150, flattened
- M. Artioli, G. Dattoli, S. Licciardi, and S. Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017.
- Paul Barry, Riordan array, orthogonal polynomials as moments, and Hankel transforms, arXiv:1102.0921 [math.CO], 2011.
- G.-S. Cheon, J.-H. Jung and L. W. Shapiro, Generalized Bessel numbers and some combinatorial settings, Discrete Math., 313 (2013), 2127-2138.
- T. Copeland, Juggling Zeros in the Matrix (Example II), 2020.
- James East and Robert D. Gray, Diagram monoids and Graham-Houghton graphs: idempotents and generating sets of ideals, arXiv:1404.2359 [math.GR], 2014. See Theorem 8.4 and Table 7. - _James East_, Aug 17 2015
- A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory, arXiv:quant-ph/0409152, 2004.
- Alexander Kreinin, Combinatorial Properties of Mills' Ratio, arXiv:1405.5852 [math.CO], 2014. See Table 2. - _N. J. A. Sloane_, May 29 2014
- S. Licciardi, Umbral Calculus, a Different Mathematical Language, arXiv:1803.03108 [math.CA], 2018.
- R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See p. 329 and A137286. From _Tom Copeland_, Jan 03 2016).
- R. Sazdanovic, A categorification of the polynomial ring, slide presentation, 2011
- S. Yang and Z. Qiao, The Bessel numbers and Bessel matrices, Jrn. Math. Rsch. and Exposition, July 2011, Vol. 31, No. 4, pp.627-636. DOI:10.3770/j.issn:1000-341X.2011.04.006.
Row sums (polynomial values at x=1) are
A000085.
Cf.
A000384,
A014105,
A034839,
A049403,
A096713,
A100861,
A104556,
A122848,
A130757,
A176230,
A176231.
-
T:=proc(n,k) if n-k mod 2 = 0 then n!/2^((n-k)/2)/((n-k)/2)!/k! else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 14 2006
-
nn=10;a=y x+x^2/2!;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, May 08 2012 *)
H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x]-(n-1)* H[n-2, x]; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten // Abs (* Jean-François Alcover, May 23 2016 *)
T[ n_, k_] := If[ n < 0, 0, Coefficient[HermiteH[n, x I/Sqrt[2]] (Sqrt[1/2]/I)^n, x, k]]; (* Michael Somos, May 10 2019 *)
-
T(n,k)=if(k<=n && k==Mod(n,2), n!/k!/(k=(n-k)/2)!>>k) \\ M. F. Hasler, Oct 23 2014
-
import sympy
from sympy import Poly
from sympy.abc import x, y
def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
def a(n): return [abs(cf) for cf in Poly(H(n, x), x).all_coeffs()[::-1]]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
def Trow(n: int) -> list[int]:
row: list[int] = [0] * (n + 1); row[n] = 1
for k in range(n - 2, -1, -2):
row[k] = (row[k + 2] * (k + 2) * (k + 1)) // (n - k)
return row # Peter Luschny, Jan 08 2023
-
def A099174_triangle(dim):
M = matrix(ZZ,dim,dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(k+1)*M[n-1,k+1]
return M
A099174_triangle(9) # Peter Luschny, Oct 06 2012
A059344
Triangle read by rows: row n consists of the nonzero coefficients of the expansion of 2^n x^n in terms of Hermite polynomials with decreasing subscripts.
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 1, 12, 12, 1, 20, 60, 1, 30, 180, 120, 1, 42, 420, 840, 1, 56, 840, 3360, 1680, 1, 72, 1512, 10080, 15120, 1, 90, 2520, 25200, 75600, 30240, 1, 110, 3960, 55440, 277200, 332640, 1, 132, 5940, 110880, 831600, 1995840, 665280, 1, 156
Offset: 0
Triangle begins
1;
1;
1, 2;
1, 6;
1, 12, 12;
1, 20, 60;
1, 30, 180, 120;
1, 42, 420, 840;
1, 56, 840, 3360, 1680;
1, 72, 1512, 10080, 15120;
x^2 = 1/2^2*(Hermite(2,x)+2*Hermite(0,x)); x^3 = 1/2^3*(Hermite(3,x)+6*Hermite(1,x)); x^4 = 1/2^4*(Hermite(4,x)+12*Hermite(2,x)+12*Hermite(0,x)); x^5 = 1/2^5*(Hermite(5,x)+20*Hermite(3,x)+60*Hermite(1,x)); x^6 = 1/2^6*(Hermite(6,x)+30*Hermite(4,x)+180*Hermite(2,x)+120*Hermite(0,x)). - _Vladeta Jovovic_, Feb 21 2003
1 = H(0); 2x = H(1); 4x^2 = H(2)+2H(0); 8x^3 = H(3)+6H(1); etc. where H(k)=Hermite(k,x).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
-
Flatten[Table[n!/(k! * (n-2k)!), {n, 0, 13}, {k, 0, Floor[n/2]}]]
(* Second program: *)
row[n_] := Table[h[k], {k, n, Mod[n, 2], -2}] /. SolveAlways[2^n*x^n == Sum[h[k]*HermiteH[k, x], {k, Mod[n, 2], n, 2}], x] // First; Table[ row[n], {n, 0, 13}] // Flatten (* Jean-François Alcover, Jan 05 2016 *)
-
for(n=0,25, for(k=0,floor(n/2), print1(n!/(k!*(n-2*k)!), ", "))) \\ G. C. Greubel, Jan 07 2017
A277281
Maximal coefficient (ignoring signs) in Hermite polynomial of order n.
Original entry on oeis.org
1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400
Offset: 0
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.
-
Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
-
a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016
-
from sympy import hermite, Poly
def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017
A277280
Maximal coefficient in Hermite polynomial of order n.
Original entry on oeis.org
1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
Offset: 0
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
-
Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
-
a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
-
from sympy import hermite, Poly
def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017
A163322
The 3rd Hermite Polynomial evaluated at n: H_3(n) = 8*n^3 - 12*n.
Original entry on oeis.org
0, -4, 40, 180, 464, 940, 1656, 2660, 4000, 5724, 7880, 10516, 13680, 17420, 21784, 26820, 32576, 39100, 46440, 54644, 63760, 73836, 84920, 97060, 110304, 124700, 140296, 157140, 175280, 194764, 215640, 237956, 261760, 287100, 314024, 342580
Offset: 0
-
[8*n^3-12*n: n in [0..40]]; // Vincenzo Librandi, Mar 05 2012
-
A163322 := proc(n) orthopoly[H](3,n) ; end: seq(A163322(n),n=0..80) ; # R. J. Mathar, Jul 26 2009
-
CoefficientList[Series[-4*x*(1-14*x+x^2)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Mar 05 2012 *)
LinearRecurrence[{4,-6,4,-1},{0,-4,40,180},40] (* Harvey P. Dale, Aug 14 2014 *)
-
a(n)=8*n^3-12*n \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A163322(n): return hermite(3,n) # Chai Wah Wu, Jan 06 2022
A163323
The 4th Hermite Polynomial evaluated at n: H_4(n) = 16n^4 - 48n^2 + 12.
Original entry on oeis.org
12, -20, 76, 876, 3340, 8812, 19020, 36076, 62476, 101100, 155212, 228460, 324876, 448876, 605260, 799212, 1036300, 1322476, 1664076, 2067820, 2540812, 3090540, 3724876, 4452076, 5280780, 6220012, 7279180, 8468076, 9796876, 11276140
Offset: 0
-
[16*n^4-48*n^2+12: n in [0..40]]; // Vincenzo Librandi, Mar 05 2012
-
A163323 := proc(n) orthopoly[H](4,n) ; end: seq(A163323(n),n=0..80) ; # R. J. Mathar, Jul 26 2009
-
Table[HermiteH[4,n],{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
Table[16 n^4 - 48 n^2 + 12, {n, 0, 30}] (* Vincenzo Librandi, Sep 25 2014 *)
LinearRecurrence[{5,-10,10,-5,1},{12,-20,76,876,3340},40] (* Harvey P. Dale, Jul 03 2019 *)
-
a(n)=16*n^4-48*n^2+12 \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A163323(n): return hermite(4,n) # Chai Wah Wu, Jan 06 2022
A277378
Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).
Original entry on oeis.org
1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0
-
Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)
A185296
Triangle of connection constants between the falling factorials (x)(n) and (2*x)(n).
Original entry on oeis.org
1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512
Offset: 0
Triangle begins
n\k|...0.....1.....2.....3.....4.....5.....6
============================================
0..|...1
1..|...0.....2
2..|...0.....2.....4
3..|...0.....0....12.....8
4..|...0.....0....12....48....16
5..|...0.....0.....0...120...160....32
6..|...0.....0.....0...120...720...480....64
..
Row 3:
(2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1).
Row 4:
(2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) +
48*x*(x-1)*(x-2)+ 12*x*(x-1).
Examples of recurrence relation
T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16;
T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160;
T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720;
T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.
-
T := (n,k) -> (n!/k!)*binomial(k,n-k)*2^(2*k-n):
seq(seq(T(n, k), k=0..n), n=0..9);
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016
A277379
E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).
Original entry on oeis.org
1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0
-
Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]
Showing 1-10 of 11 results.
Comments