cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A277280 Maximal coefficient in Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 08 2016

Keywords

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
		

Crossrefs

Cf. A059343, A277281 (ignoring signs).

Programs

  • Mathematica
    Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
  • PARI
    a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
    
  • Python
    from sympy import hermite, Poly
    def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017

A277378 Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).

Original entry on oeis.org

1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
    With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)

Formula

E.g.f.: exp(2*x/(1-x))/sqrt(1-x^2).
a(n) = |H_n(i)|^2 / 2^n = H_n(i) * H_n(-i) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+2)*(a(n) + n*a(n-1)) = a(n+1) + n*(n-1)^2*a(n-2).
a(n) ~ n^n / (2 * exp(1 - 2*sqrt(2*n) + n)) * (1 + 2*sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2021

A381737 Orders k of Hermite polynomials whose maximal coefficient in absolute value appears twice.

Original entry on oeis.org

8, 13, 34, 43, 76, 89, 134, 151, 208, 229, 298, 323, 404, 433, 526, 559, 664, 701, 818, 859, 988, 1033, 1174, 1223, 1376, 1429, 1594, 1651, 1828, 1889, 2078, 2143, 2344, 2413, 2626, 2699, 2924, 3001, 3238, 3319, 3568, 3653, 3914, 4003, 4276, 4369, 4654, 4751, 5048
Offset: 1

Views

Author

Mike Sheppard, Mar 05 2025

Keywords

Examples

			H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8, maximum coefficient in absolute value is 13440, which appears twice. Hence 8 is a term.
H_6(x) = -120 + 720 x^2 - 480 x^4 + 64 x^6. Absolute maximum unique. Hence 6 is not a term.
		

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Table[Count[#, Max@#] &@Abs@CoefficientList[HermiteH[n, x], x], {n, 1000}], 2]
  • PARI
    isok(k) = my(vp=apply(x->abs(x), Vec(polhermite(k))), m=vecmax(vp)); #select(x->(x==m), vp) == 2; \\ Michel Marcus, Mar 09 2025

Formula

Conjecture 1: a(n) = 2*n*(n + 2) + (n + 1)*(-1)^(n+1).
Conjecture 2: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Conjecture 3: G.f.: (8*x + 5*x^2 + 5*x^3 - x^4 - x^5) / ((1 - x)^3 * (1 + x)^2).
Terms < 20000 consistent with conjectures. - Jinyuan Wang, Mar 09 2025.

A277379 E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Comments

Is this the same as A227545 (at least for n>=1)?

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]

Formula

a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3).
a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - Vaclav Kotesovec, Oct 14 2016

A381524 Smallest exponent of x of maximal coefficient (ignoring signs) in Hermite polynomial of order n.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 12
Offset: 0

Views

Author

Mike Sheppard, Feb 26 2025

Keywords

Comments

Exponent is unique except for order of n within A381737, whose maximum of absolute value of coefficients appear twice. For example, H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8, maximum coefficient in absolute value is 13440, which appears twice. For those values a(n) and a(n)+2 both are maximums, in absolute value.
Conjecture: Differences are either +1 or -1.

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, occurring at x^3, hence a(5) = 3.
For n = 8, H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8. The maximal coefficient (ignoring signs) is 13440, occurring at both x^2 and x^4, the smallest exponent being 2, hence a(8) = 2.
		

Crossrefs

Cf. A277281 (maximal coefficient ignoring signs), A381737 (non-unique exponents).

Programs

  • Mathematica
    Table[(PositionLargest@Abs[CoefficientList[HermiteH[n, x], x]])[[1]] - 1, {n, 0, 100}]
  • PARI
    a(n) = my(p=polhermite(n), m=vecmax(apply(x->abs(x), Vec(p)))); for(i=0, poldegree(p), if (abs(polcoef(p, i)) == m, return(i))); \\ Michel Marcus, Feb 26 2025
Showing 1-5 of 5 results.