A118396 Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!* a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n))) end: seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
-
PARI
{a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}
Formula
a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1.
Comments