cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118396 Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of triangle A118394 is: exp(x+y*x^3), where A118394(n,k) = n!/k!/(n-3*k)!. More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A118394, A118395; variants: A118393, A118932.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}

Formula

a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1.

A118395 Expansion of e.g.f. exp(x + x^3).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 481, 2731, 10417, 91225, 681121, 3493711, 33597961, 303321877, 1938378625, 20282865331, 211375647841, 1607008257841, 18157826367937, 212200671085975, 1860991143630841, 22560913203079021, 289933758771407521, 2869267483843753147, 37116733726117707025
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

Equals row sums of triangle A118394.

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else Self(n-1) + 3*(n-2)*(n-3)*Self(n-3): n in [1..26]]; // Vincenzo Librandi, Aug 25 2015
    
  • Maple
    with(combstruct):seq(count(([S, {S=Set(Union(Z, Prod(Z, Z, Z)))}, labeled], size=n)), n=0..22); # Zerinvary Lajos, Mar 18 2008
  • Mathematica
    CoefficientList[Series[E^(x+x^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
    T[n_, k_] := n!/(k!(n-3k)!);
    a[n_] := Sum[T[n, k], {k, 0, Floor[n/3]}];
    a /@ Range[0, 24] (* Jean-François Alcover, Nov 04 2020 *)
  • PARI
    a(n)=n!*polcoeff(exp(x+x^3+x*O(x^n)),n)
    
  • PARI
    N=33;  x='x+O('x^N);
    egf=exp(x+x^3);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Sep 15 2012 */
    
  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
    
  • Sage
    def a(n):
        if (n<3): return 1
        else: return a(n-1) + 3*(n-1)*(n-2)*a(n-3)
    [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021

Formula

E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + (1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1) )), recursively defined continued fraction. - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 3^(n/3-1/2) * n^(2*n/3) * exp((n/3)^(1/3)-2*n/3). - Vaclav Kotesovec, Jun 02 2013
E.g.f.: A(x) = exp(x+x^3) satisfies A' - (1+3*x^2)*A = 0. - Gheorghe Coserea, Aug 24 2015
a(n+1) = a(n) + 3*n*(n-1)*a(n-2). - Gheorghe Coserea, Aug 24 2015
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-2*k,k)/(n-2*k)!. - Seiichi Manyama, Feb 25 2022

Extensions

Missing a(0)=1 prepended by Joerg Arndt, Sep 15 2012
Showing 1-2 of 2 results.