cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A190877 Expansion of e.g.f. exp(x+x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 1844641, 20013841, 119845441, 519072841, 1816454641, 223394731561, 3501661887361, 29675906201761, 177923109591361, 844925253766561, 104750282797418881
Offset: 0

Views

Author

Vladimir Kruchinin, May 23 2011

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^5],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 25 2015 *)
  • Maxima
    a(n):=n!*sum(binomial(n+(-4)*j,j)/(n+(-4)*j)!,j,0,n/4);
    
  • PARI
    a(n) = if(n<5, 1, a(n-1)+5!*binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 25 2022

Formula

a(n) = n! * Sum_{j=0..n/4} binomial(n+(-4)*j,j)/(n+(-4)*j)!.
a(n) = a(n-1) + 5! * binomial(n-1,4) * a(n-5) for n > 4. - Seiichi Manyama, Feb 25 2022

A362392 E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).

Original entry on oeis.org

1, 1, 1, 7, 49, 241, 2041, 26041, 282913, 3449377, 57170161, 973059121, 16847893921, 343341027745, 7680743819113, 175958943331081, 4375517632543681, 118932887426911681, 3374685950589927649, 100735118425384221025, 3217474234925998764481
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Crossrefs

Column k=6 of A362378.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(x)))))

Formula

E.g.f.: exp(x - LambertW(-x^3 * exp(x))) = -LambertW(-x^3 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A373578 Expansion of e.g.f. exp(x * (1 + x^2)^2).

Original entry on oeis.org

1, 1, 1, 13, 49, 241, 2401, 13021, 128353, 1346689, 10615681, 140431501, 1544877841, 17576665393, 264566466529, 3226728670621, 48376006929601, 766753039205761, 11052669865900033, 197019825098096269, 3271213100827557361, 56597110823949654001
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x*(1 + x^2)^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 11 2024 *)
  • PARI
    a(n) = n!*sum(k=0, 2*n\5, binomial(2*n-4*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(2*n/5)} binomial(2*n-4*k,k)/(n-2*k)!.
a(n) == 1 (mod 12).
a(n) = a(n-1) + 6*(n-1)*(n-2)*a(n-3) + 5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5).
a(n) ~ 5^(n/5 - 1/2) * exp(7*5^(-11/5)*n^(1/5) + 2*5^(-3/5)*n^(3/5) - 4*n/5) * n^(4*n/5). - Vaclav Kotesovec, Jun 11 2024

A246607 Expansion of e.g.f. exp(x - x^3).

Original entry on oeis.org

1, 1, 1, -5, -23, -59, 241, 2311, 9745, -30743, -529919, -3161069, 6984121, 216832045, 1696212337, -2117117729, -138721306079, -1359994188719, 367573878145, 127713732858667, 1523067770484361, 1104033549399061, -159815269852521359, -2270787199743845705, -3946710127731620303
Offset: 0

Views

Author

Robert G. Wilson v, Aug 31 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 24]! CoefficientList[Series[Exp[x - x^3], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 31 2014, with correction from Vincenzo Librandi *)
  • PARI
    default(seriesprecision, 30); serlaplace(exp(x-x^3)) \\ Michel Marcus, Aug 31 2014
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-3!*binomial(n-1, 2)*a(n-3)); \\ Seiichi Manyama, Feb 25 2022

Formula

From Seiichi Manyama, Feb 25 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - 3! * binomial(n-1,2) * a(n-3) for n > 2. (End)

A118396 Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of triangle A118394 is: exp(x+y*x^3), where A118394(n,k) = n!/k!/(n-3*k)!. More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A118394, A118395; variants: A118393, A118932.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}

Formula

a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1.

A118393 Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).

Original entry on oeis.org

1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of A059344 is: exp(x+y*x^2). More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A059344, variants: A118395, A118930.

Programs

  • Magma
    function a(n)
      if n eq 0 then return 1;
      else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]);
      end if; return a; end function;
    [a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118393 := proc(n)
        option remember;
        if n <=1 then
            1;
        else
            n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ;
        end if;
    end proc:
    seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
  • PARI
    a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
    
  • Sage
    f=factorial;
    def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2))
    [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
    

Formula

a(n) = Sum_{k=0..[n/2]} n!/k!/(n-2*k)! *a(k) for n>=0, with a(0)=1.

A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

Row sums form A118395.
Eigenvector is A118396.

Examples

			Triangle begins:
  1;
  1;
  1;
  1,    6;
  1,   24;
  1,   60;
  1,  120,    360;
  1,  210,   2520;
  1,  336,  10080;
  1,  504,  30240,    60480;
  1,  720,  75600,   604800;
  1,  990, 166320,  3326400;
  1, 1320, 332640, 13305600, 19958400;
  ...
		

Crossrefs

Cf. A118395 (row sums), A118396 (eigenvector).
Variants: A059344, A118931.

Programs

  • Magma
    F:= Factorial;
    [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_] := n!/(k!(n-3k)!);
    Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
  • PARI
    T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
    
  • Sage
    f=factorial;
    flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3).

A358560 a(n) = Sum_{k=0..floor(n/3)} (n-k)!/(k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 33, 91, 223, 597, 1753, 4963, 14391, 44413, 137137, 427083, 1382383, 4534981, 14981673, 50719507, 174494983, 605276973, 2135204161, 7647369403, 27643067007, 101211363253, 375548195833, 1406858084931, 5326762882903, 20403498329437
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-k)!/(k!*(n-3*k)!));

Formula

a(n) = (4 * a(n-1) - a(n-2) + 2 * (2*n-3) * a(n-3))/3 for n > 2.
a(n) ~ c * 2^(2*n/3) * n^(n/3) / (3^(n/3) * exp(n/3 - 2^(1/3) * n^(2/3) / 3^(2/3) + n^(1/3) / (2^(4/3) * 3^(7/3)))) * (1 + 7795/(5832*6^(2/3)*n^(1/3)) + 135724109/(2040733440*6^(1/3)*n^(2/3)) - 5962064767253/(42845606719488*n)), where c = 0.46562048925..., conjecture: c = sqrt(2) * exp(-1/81) / 3. - Vaclav Kotesovec, Nov 25 2022

A373577 Expansion of e.g.f. exp(x * (1 + x^2)^(3/2)).

Original entry on oeis.org

1, 1, 1, 10, 37, 136, 1261, 6616, 45865, 479872, 3206521, 31165696, 356045581, 3082798720, 37528974757, 443190912256, 4792765859281, 69943918698496, 875123733523825, 11059833224507392, 179428023035501941, 2557848382674927616, 37699048392962570461
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(3*n/2-3*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*n/2-3*k,k)/(n-2*k)!.
a(n) == 1 mod 9.

A376564 E.g.f. satisfies A(x) = exp( x*A(x) * (1 + x^2*A(x)^2) ).

Original entry on oeis.org

1, 1, 3, 22, 245, 3456, 60487, 1283584, 31971753, 912448000, 29369155211, 1053204332544, 41646891006877, 1800306963331072, 84464613778359375, 4274750510822588416, 232146299393990454353, 13465725621588464173056, 830921722002492358973203
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n+1)^(n-2*k-1)*binomial(n-2*k, k)/(n-2*k)!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x * (1 + x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(n-2*k-1) * binomial(n-2*k,k)/(n-2*k)!.
Showing 1-10 of 10 results.