A190877
Expansion of e.g.f. exp(x+x^5).
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 1844641, 20013841, 119845441, 519072841, 1816454641, 223394731561, 3501661887361, 29675906201761, 177923109591361, 844925253766561, 104750282797418881
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x+x^5],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 25 2015 *)
-
a(n):=n!*sum(binomial(n+(-4)*j,j)/(n+(-4)*j)!,j,0,n/4);
-
a(n) = if(n<5, 1, a(n-1)+5!*binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 25 2022
A362392
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).
Original entry on oeis.org
1, 1, 1, 7, 49, 241, 2041, 26041, 282913, 3449377, 57170161, 973059121, 16847893921, 343341027745, 7680743819113, 175958943331081, 4375517632543681, 118932887426911681, 3374685950589927649, 100735118425384221025, 3217474234925998764481
Offset: 0
A373578
Expansion of e.g.f. exp(x * (1 + x^2)^2).
Original entry on oeis.org
1, 1, 1, 13, 49, 241, 2401, 13021, 128353, 1346689, 10615681, 140431501, 1544877841, 17576665393, 264566466529, 3226728670621, 48376006929601, 766753039205761, 11052669865900033, 197019825098096269, 3271213100827557361, 56597110823949654001
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(x*(1 + x^2)^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 11 2024 *)
-
a(n) = n!*sum(k=0, 2*n\5, binomial(2*n-4*k, k)/(n-2*k)!);
A246607
Expansion of e.g.f. exp(x - x^3).
Original entry on oeis.org
1, 1, 1, -5, -23, -59, 241, 2311, 9745, -30743, -529919, -3161069, 6984121, 216832045, 1696212337, -2117117729, -138721306079, -1359994188719, 367573878145, 127713732858667, 1523067770484361, 1104033549399061, -159815269852521359, -2270787199743845705, -3946710127731620303
Offset: 0
-
Range[0, 24]! CoefficientList[Series[Exp[x - x^3], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 31 2014, with correction from Vincenzo Librandi *)
-
default(seriesprecision, 30); serlaplace(exp(x-x^3)) \\ Michel Marcus, Aug 31 2014
-
a(n) = n!*sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
-
a(n) = if(n<3, 1, a(n-1)-3!*binomial(n-1, 2)*a(n-3)); \\ Seiichi Manyama, Feb 25 2022
A118396
Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
-
{a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}
A118393
Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).
Original entry on oeis.org
1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0
-
function a(n)
if n eq 0 then return 1;
else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]);
end if; return a; end function;
[a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
-
A118393 := proc(n)
option remember;
if n <=1 then
1;
else
n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ;
end if;
end proc:
seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
-
a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
-
f=factorial;
def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2))
[a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
A118394
Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0
Triangle begins:
1;
1;
1;
1, 6;
1, 24;
1, 60;
1, 120, 360;
1, 210, 2520;
1, 336, 10080;
1, 504, 30240, 60480;
1, 720, 75600, 604800;
1, 990, 166320, 3326400;
1, 1320, 332640, 13305600, 19958400;
...
-
F:= Factorial;
[F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
T[n_, k_] := n!/(k!(n-3k)!);
Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
-
T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
-
f=factorial;
flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A358560
a(n) = Sum_{k=0..floor(n/3)} (n-k)!/(k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, 3, 7, 13, 33, 91, 223, 597, 1753, 4963, 14391, 44413, 137137, 427083, 1382383, 4534981, 14981673, 50719507, 174494983, 605276973, 2135204161, 7647369403, 27643067007, 101211363253, 375548195833, 1406858084931, 5326762882903, 20403498329437
Offset: 0
A373577
Expansion of e.g.f. exp(x * (1 + x^2)^(3/2)).
Original entry on oeis.org
1, 1, 1, 10, 37, 136, 1261, 6616, 45865, 479872, 3206521, 31165696, 356045581, 3082798720, 37528974757, 443190912256, 4792765859281, 69943918698496, 875123733523825, 11059833224507392, 179428023035501941, 2557848382674927616, 37699048392962570461
Offset: 0
A376564
E.g.f. satisfies A(x) = exp( x*A(x) * (1 + x^2*A(x)^2) ).
Original entry on oeis.org
1, 1, 3, 22, 245, 3456, 60487, 1283584, 31971753, 912448000, 29369155211, 1053204332544, 41646891006877, 1800306963331072, 84464613778359375, 4274750510822588416, 232146299393990454353, 13465725621588464173056, 830921722002492358973203
Offset: 0
Showing 1-10 of 10 results.
Comments