A059355 Number of chains of n-3 partitions in the reduced partition lattice on n elements.
1, 13, 205, 4245, 114345, 3919860, 167310360, 8719666200, 545594049000, 40394317194000, 3494634235092000, 349446163958892000, 40005208010427660000, 5199553600938496800000, 761551300698921532800000, 124863678342008772566400000, 22782147644564103946550400000
Offset: 3
Keywords
Examples
From _Harry Richman_, Mar 30 2023: (Start) For n = 4, a chain of 1 partition is just a partition in the reduced partition lattice. There are 13 such partitions: {123|4} {124|3} {134|2} {1|234} {12|34} {13|24} {14|23} {12|3|4} {13|2|4} {14|2|3} {1|23|4} {1|24|3} {1|2|34} (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..269
Crossrefs
A diagonal of triangle in A008826.
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=1, 1, add(Stirling2(n, j)*b(j)*x, j=0..n-1))) end: a:= n-> coeff(b(n), x, n-2): seq(a(n), n=3..20); # Alois P. Heinz, Mar 31 2023
-
Mathematica
a[1, ] = 1; a[n, x_] := a[n, x] = Sum[StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; Table[CoefficientList[a[n, x], x][[-2]], {n, 3, 17}] (* Jean-François Alcover, Nov 28 2013, after Vladeta Jovovic *)
Extensions
More terms from Vladeta Jovovic, Jan 02 2004
Name changed by Harry Richman, Mar 30 2023
Comments