cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059356 A diagonal of triangle in A008298.

Original entry on oeis.org

1, 9, 59, 450, 3394, 30912, 293292, 3032208, 36290736, 433762560, 5925016800, 83648747520, 1335385128960, 20323375994880, 376785057196800, 6493118120294400, 132672192555571200, 2513351450024755200, 56577426980420505600, 1188283280226545664000, 29682641812682686464000, 658094690655791972352000
Offset: 2

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[n!/2 * Sum[DivisorSigma[1, k] * DivisorSigma[1, n-k] / k / (n-k), {k, 1, n-1}], {n, 2, nmax}] (* Vaclav Kotesovec, Nov 09 2020 *)
  • PARI
    {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-t)), n), 2)} \\ Seiichi Manyama, Nov 07 2020
    
  • PARI
    {a(n)= (n-1)!*sum(k=1, n-1, sigma(k)*sigma(n-k)/k)} \\ Seiichi Manyama, Nov 09 2020
    
  • PARI
    {a(n)= n!*sum(k=1, n-1, sigma(k)*sigma(n-k)/(k*(n-k)))/2} \\ Seiichi Manyama, Nov 09 2020

Formula

a(n) = (n-1)! * Sum_{k=1..n-1} sigma(k)*sigma(n-k)/k = (n!/2) * Sum_{k=1..n-1} sigma(k)*sigma(n-k)/(k*(n-k)). - Seiichi Manyama, Nov 09 2020.
E.g.f.: (1/2) * log( Product_{k>=1} (1 - x^k) )^2. - Ilya Gutkovskiy, Apr 24 2021

Extensions

More terms from Vladeta Jovovic, Dec 28 2001