A059365 Another version of the Catalan triangle: T(r,s) = binomial(2*r-s-1,r-1) - binomial(2*r-s-1,r), r>=0, 0 <= s <= r.
0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44
Offset: 0
Examples
Triangle starts 0; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; 0, 42, 42, 28, 14, 5, 1; 0, 132, 132, 90, 48, 20, 6, 1; 0, 429, 429, 297, 165, 75, 27, 7, 1; 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1; 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- FindStat - Combinatorial Statistic Finder, The number of touch points of a Dyck path., The number of initial rises of a Dyck paths., The number of nodes on the left branch of the tree., The number of subtrees.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- Index to sequences related to Catalan
Crossrefs
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Essentially the same as A033184.
Programs
-
Magma
/* as triangle */ [[[0] cat [Binomial(2*r-s-1, r-1)- Binomial(2*r-s-1, r): s in [1..r]]: r in [0..10]]]; // Vincenzo Librandi, Jan 09 2017
-
Mathematica
Table[Binomial[2*r - s - 1, r - 1] - Binomial[2*r - s - 1, r], {r, 0, 10}, {s, 0, r}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
-
PARI
tabl(nn) = { print(0); for (r=1, nn, for (s=0, r, print1(binomial(2*r-s-1,r-1)-binomial(2*r-s-1,r), ", ");); print(););} \\ Michel Marcus, Nov 01 2013