A059411 a(1) = 2, a(n) = k*a(n-1) + 1, where a(n) is the smallest prime of the form k*a(n-1) + 1 and k > 1.
2, 5, 11, 23, 47, 283, 1699, 20389, 244669, 7340071, 205521989, 411043979, 4932527749, 295951664941, 4735226639057, 227290878674737, 12273707448435799, 883706936287377529, 24743794216046570813
Offset: 1
Keywords
Examples
a(5) = 47 and a(6) = 283 = 6*47 +1 is the smallest such prime. The initial values are safe primes: (2), 5, 11, 23, 47, ... To obtain qa(i)+1 primes q > 2 multiplier arises and such a q always exists in arithmetic progression of difference a(i). E.g., {1699*2k+1} gives the first prime when 2k=12. So a(7)=1699 is followed by 1699*12+1 = 20389 = a(8). The emergent "quotient-sequence" is {2, 2, 2, 2, 6, 6, 12, 12, 30, 28, 2, 12, 60, 16, 48, 54, 72, 28, 180, 102, 4, 12, 106, 50, 18}. A059411 is an infinite sequence of primes increasing at least with exponential speed.
References
- Amarnath Murthy, On the divisors of Smarandache Unary Sequence. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A061092.
Programs
-
Maple
i := 0:a[0] := 2:while(i<40) do k := 2:while(not isprime(k*a[i]+1)) do k := k+1; end do; i := i+1; a[i] := k*a[i-1]+1; end do:q := seq(a[i],i=0..39);
-
Mathematica
nxt[n_]:=Module[{k=2},While[!PrimeQ[k*n+1],k++];k*n+1]; NestList[nxt,2,20] (* Harvey P. Dale, Dec 26 2014 *)
Formula
a(n+1) = a(n)*q(n) + 1, q(n) = Min{q|qa(n)+1 is prime}.
Comments