cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A214523 a(1) = 13, a(n) is smallest prime of the form k*a(n-1) + 1.

Original entry on oeis.org

13, 53, 107, 643, 7717, 30869, 432167, 6050339, 12100679, 169409507, 9148113379, 439109442193, 5269313306317, 84309012901073, 7587811161096571, 303512446443862841, 69807862682088453431, 2652698781919361230379, 143245734223645506440467
Offset: 1

Views

Author

Robin Garcia, Jul 23 2012

Keywords

Comments

Sequence does not begin with a(1) = 2 or 3 (13 = 6*2+1 = 4*3*1; but 2*2+1 =5 or 2*3 +1 = 7 are smaller) , because this would be A061092 or A059411.

Examples

			53 = 4*13 + 1 ; 107 = 2*53 + 1.
		

Crossrefs

Programs

  • Mathematica
    t = {13}; Do[k = 1; While[p = k*t[[-1]] + 1; ! PrimeQ[p], k++]; AppendTo[t, p], {20}]; t (* T. D. Noe, Jul 24 2012 *)
    nxt[n_]:=Module[{k=1},While[!PrimeQ[k*n+1],k++];n*k+1]; NestList[nxt,13,20] (* Harvey P. Dale, Apr 28 2014 *)
  • PARI
    a=13;for(n=1,200,b=a*n+1;if(isprime(b),a=b;print1(a,", ");next(n=1)))

A214632 a(1) = 17, a(n) is smallest prime of the form k*a(n - 1) + 1.

Original entry on oeis.org

17, 103, 619, 2477, 34679, 416149, 7490683, 29962733, 419478263, 5872695683, 82217739563, 986612874757, 27625160493197, 994505777755093, 5967034666530559, 71604415998366709, 6444397439853003811, 180443128315884106709, 9743928929057741762287
Offset: 1

Views

Author

Robin Garcia, Jul 23 2012

Keywords

Comments

Sequence does not begin with 2 (17 = 8*2 + 1; all primes are k*2+1) because 3 = 1*2 + 1 or 5 = 2*2 + 1 are smaller; and they would lead to A061092, or A059411. Also: 7 belongs to A061092; 11 to A059411 and 13 is a(1) in A214523.

Examples

			a(2) = 103 = 6*17 + 1.
		

Crossrefs

Programs

  • Mathematica
    t = {17}; Do[k = 1; While[p = k*t[[-1]] + 1; ! PrimeQ[p], k++]; AppendTo[t, p], {20}]; t (* T. D. Noe, Jul 24 2012 *)
    nxt[n_]:=Module[{k=1},While[!PrimeQ[k*n+1],k++];k*n+1]; NestList[nxt,17,20] (* Harvey P. Dale, Apr 18 2014 *)

A214633 a(1)=2; a(n) is smallest prime of the form k*a(n-1) + 3, k>0.

Original entry on oeis.org

2, 5, 13, 29, 61, 491, 3931, 15727, 157273, 314549, 4403689, 17614759, 387524701, 5425345817, 119357607977, 9787323854117, 78298590832939, 1722568998324661, 68902759932986443, 4685387675443078127, 318606361930129312639, 637212723860258625281
Offset: 1

Views

Author

Robin Garcia, Jul 23 2012

Keywords

Crossrefs

Programs

  • Maple
    A214633 := proc(n)
        option remember;
        local k;
        if n =  1 then
            2;
        else
            for k from 1 do
                if isprime(k*procname(n-1)+3) then
                    return k*procname(n-1)+3 ;
                end if;
            end do:
        end if;
    end proc:
    seq(A214633(n),n=1..20) ; # R. J. Mathar, Jul 23 2012

A071258 a(1) = 4; a(n) = smallest composite number of form k*a(n-1) + 1 with k > 1.

Original entry on oeis.org

4, 9, 28, 57, 115, 231, 694, 1389, 2779, 5559, 16678, 33357, 66715, 133431, 400294, 800589, 1601179, 3202359, 9607078, 19214157, 38428315, 76856631, 153713263, 307426527, 614853055, 1229706111, 3689118334, 7378236669, 14756473339
Offset: 0

Views

Author

Amarnath Murthy, May 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[n_]:=Module[{k=2},While[PrimeQ[k*n+1],k++];k*n+1]; NestList[nxt,4,30] (* Harvey P. Dale, Mar 26 2014 *)

Extensions

More terms from Vladeta Jovovic, Jun 03 2002

A214634 a(1) = 7; a(n) is smallest prime of the form k*a(n-1) + 3, k>0.

Original entry on oeis.org

7, 17, 37, 151, 607, 1217, 2437, 4877, 39019, 78041, 624331, 6243313, 174812767, 1398502139, 19579029949, 39158059901, 1957902995053, 15663223960427, 156632239604273, 3132644792085463, 181693397940956857, 726773591763827431, 7267735917638274313, 1148302274986847341457, 4593209099947389365831
Offset: 1

Views

Author

Robin Garcia, Jul 23 2012

Keywords

Examples

			a(2) = 17 = 2 * 7 + 3.
a(3) = 37 = 2 * 17 + 3.
a(4) = 151 = 4 * 37 + 3.
		

Crossrefs

Programs

  • Maple
    A214634 := proc(n)
        option remember;
        local k;
        if n =  1 then
            7;
        else
            for k from 1 do
                if isprime(k*procname(n-1)+3) then
                    return k*procname(n-1)+3 ;
                end if;
            end do:
        end if;
    end proc:
    seq(A214634(n),n=1..20) ; # R. J. Mathar, Jul 23 2012
  • Mathematica
    spf[n_]:=Module[{k=1},While[!PrimeQ[k*n+3],k++];k*n+3]; NestList[spf,7,25] (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    a=7;for(n=1,200,b=a*n+3;if(isprime(b),a=b;print1(a,", ");next(n=1)))

Extensions

More terms from Robert Israel, Nov 23 2016

A214680 a(1)=3; a(n) is the smallest prime of the form k*a(n-1) + 2.

Original entry on oeis.org

3, 5, 7, 23, 71, 73, 367, 1103, 7723, 131293, 3807499, 19037497, 57112493, 1427812327, 15705935599, 141353420393, 989473942753, 44526327423887, 311684291967211, 4675264379508167, 4675264379508169, 275840598390981973, 4137608975864729597
Offset: 1

Views

Author

Robin Garcia, Jul 25 2012

Keywords

Comments

Up to the end of the b-file, there are only 4 pairs of twin primes in the sequence, with lesser twin primes 3, 5, 71 and 4675264379508167. - Editors, Feb 20 2018

Crossrefs

Programs

  • Mathematica
    t = {3}; Do[k = 1; While[p = k*t[[-1]] + 2; ! PrimeQ[p], k++]; AppendTo[t, p], {25}]; t (* T. D. Noe, Jul 26 2012 *)
Showing 1-6 of 6 results.