cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059455 Safe primes which are also Sophie Germain primes.

Original entry on oeis.org

5, 11, 23, 83, 179, 359, 719, 1019, 1439, 2039, 2063, 2459, 2819, 2903, 2963, 3023, 3623, 3779, 3803, 3863, 4919, 5399, 5639, 6899, 6983, 7079, 7643, 7823, 10163, 10799, 10883, 11699, 12203, 12263, 12899, 14159, 14303, 14699, 15803, 17939
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Primes p such that both (p-1)/2 and 2*p+1 are prime.
Except for 5, all are congruent to 11 modulo 12.
Primes "inside" Cunningham chains of first kind.
Infinite under Dickson's conjecture. - Charles R Greathouse IV, Jul 18 2012
See A162019 for the subset of a(n) that are "reproduced" by the application of the transformations (a(n)-1)/2 and 2*a(n)+1 to the set a(n). - Richard R. Forberg, Mar 05 2015

Examples

			83 is a term because it is prime and 2*83+1 = 167 and (83-1)/2 = 41 are both primes.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) |IsPrime((p-1) div 2) and IsPrime(2*p+1)]; // Vincenzo Librandi, Oct 31 2014
    
  • Mathematica
    lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[2*p+1], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *)
    Select[Prime[Range[1000]], AllTrue[{(# - 1)/2, 2 # + 1}, PrimeQ] &] (* requires Mathematica 10+; Feras Awad, Dec 19 2018 *)
  • PARI
    forprime(p=2,1e5,if(isprime(p\2)&&isprime(2*p+1),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059455_gen(): # generator of terms
        return filter(lambda p:isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1)))
    A059455_list = list(islice(A059455_gen(),10)) # Chai Wah Wu, Jul 12 2022

Formula

A156660(a(n))*A156659(a(n)) = 1; A156877 gives numbers of these numbers <= n. - Reinhard Zumkeller, Feb 18 2009