cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059912 Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).

Original entry on oeis.org

1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
Offset: 1

Views

Author

Vladeta Jovovic, Feb 09 2001

Keywords

Comments

A permutation of the odd positive numbers; namely, order each odd number d by the multiplicative order of 2 modulo d (in case of a tie, smaller d go first). - Jeppe Stig Nielsen, Feb 13 2020

Examples

			There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.
Triangle T(n,k) begins:
    1;
    3;
    7;
    5,   15;
   31;
    9,   21,  63;
  127;
   17,   51,  85, 255;
   73,  511;
   11,   33,  93, 341, 1023;
  ...
		

Crossrefs

Column k=1 of A212737.
Column k=1 gives: A212953.
Last elements of rows give: A000225.
Cf. A108974.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(2^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, May 31 2012
  • Mathematica
    m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
  • PARI
    maxDegree=26;for(n=1,maxDegree,forstep(d=1,2^n,2,znorder(Mod(2,d))==n&&print1(d,", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012

A059913 Triangle T(n,k) of numbers of n degree irreducible polynomials over GF(2) which have order A059912(n,k), k=1..A059499(n).

Original entry on oeis.org

2, 1, 2, 1, 2, 6, 1, 2, 6, 18, 2, 4, 8, 16, 8, 48, 1, 2, 6, 30, 60, 2, 8, 176, 1, 2, 2, 2, 4, 6, 4, 6, 8, 12, 12, 24, 24, 36, 48, 144, 630, 3, 6, 18, 378, 756, 10, 12, 60, 300, 1800, 16, 32, 64, 128, 256, 512, 1024, 2048, 7710, 1, 1, 2, 6, 6, 6, 8, 12, 18, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 09 2001

Keywords

Comments

Row sums give A001037.

Examples

			There are 9 (cf. A001037) irreducible polynomials of degree 6 over GF(2): 1 of order 9, 2 of order 21 and 6 of order 63 (cf. A059912).
Triangle T(n,k) begins:
  2;
  1;
  2;
  1,  2;
  6;
  1,  2,   6;
  18;
  2,  4,   8, 16;
  8, 48;
  1,  2,   6, 30, 60;
  2,  8, 176;
  ...
		

Crossrefs

Programs

  • Mathematica
    Prepend[Table[Map[EulerPhi[#]/n &, Complement[Divisors[2^n - 1],Union[Flatten[Table[Divisors[2^k - 1], {k, 1, n - 1}]]]]], {n, 2,20}], {2}] // Grid (* Geoffrey Critzer, Dec 02 2019 *)

Formula

T(n,k) = phi(A059912(n,k))/n, where phi = Euler totient function A000010.
Showing 1-2 of 2 results.