cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.

Original entry on oeis.org

1, 4, 9, 64, 25, 36, 49, 256, 729, 100, 121, 576, 169, 196, 225, 4096, 289, 2916, 361, 1600, 441, 484, 529, 2304, 15625, 676, 6561, 3136, 841, 900, 961, 16384, 1089, 1156, 1225, 46656, 1369, 1444, 1521, 6400, 1681, 1764, 1849, 7744, 18225, 2116, 2209
Offset: 1

Views

Author

John W. Layman, Feb 15 2001

Keywords

Comments

This sequence is multiplicative. - Mitch Harris, Apr 19 2005
The sequence enumerates the solutions of a system of polynomials equations modulo n, hence is multiplicative by the Chinese Remainder Theorem. The middle entry of the 3 X 3 is zero modulo n. - Michael Somos, Apr 30 2005

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=if(n<1,0,n^3/core(n)) /* Michael Somos, Apr 30 2005 */

Formula

a(n) = A008833(n)*n^2, where A008833(n) is the largest square that divides n.
Multiplicative with a(p^e) = p^(3e - (e % 2)). - Mitch Harris, Jun 09 2005
Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - Vaclav Kotesovec, Sep 16 2020
Sum_{n>=1} 1/a(n) = 15*zeta(6)/Pi^2 = A082020 * A013664 = 1.546176... . - Amiram Eldar, Nov 03 2022