A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.
1, 4, 9, 64, 25, 36, 49, 256, 729, 100, 121, 576, 169, 196, 225, 4096, 289, 2916, 361, 1600, 441, 484, 529, 2304, 15625, 676, 6561, 3136, 841, 900, 961, 16384, 1089, 1156, 1225, 46656, 1369, 1444, 1521, 6400, 1681, 1764, 1849, 7744, 18225, 2116, 2209
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
PARI
a(n)=if(n<1,0,n^3/core(n)) /* Michael Somos, Apr 30 2005 */
Formula
Multiplicative with a(p^e) = p^(3e - (e % 2)). - Mitch Harris, Jun 09 2005
Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - Vaclav Kotesovec, Sep 16 2020
Comments