cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059502 a(n) = (3*n*F(2n-1) + (3-n)*F(2n))/5 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 3, 9, 27, 80, 234, 677, 1941, 5523, 15615, 43906, 122868, 342409, 950727, 2631165, 7260579, 19982612, 54865566, 150316973, 411015705, 1121818311, 3056773383, 8316416134, 22593883752, 61301547025, 166118284299, 449639574897, 1215751720491, 3283883157848
Offset: 0

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

Substituting x(1-x)/(1-2x) into x/(1-x)^2 yields g.f. of sequence.
Variation of A059216 (and of Boustrophedon transform) applied to 1,2,3,4,...: fill an array by diagonals, each time in the same direction, say the 'up' direction. The first column is 1,2,3,4,... For the next element of a diagonal, add to the previous element the elements of the row the new element is in. The first row gives a(n).

Examples

			The array (see A059503) begins
  1 3  9 27 80 ...
  2 5 14 40 ...
  3 7 19 ...
  4 9  5 ...
		

Crossrefs

Programs

  • Magma
    [(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
  • Mathematica
    Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5,{n,0,30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
    

Formula

a(n) = 2*a(n-1) + Sum{m<=n-2} a(m) + A001519(n-2).
G.f.: x*(1 - x)*(1 - 2*x)/(1 - 3*x + x^2)^2. - Emeric Deutsch, Oct 07 2002
a(n) = A147703(n,1). - Philippe Deléham, Nov 29 2008
a(n) = A001871(n-1) - 3*A001871(n-2) + 2*A001871(n-3). - R. J. Mathar, Apr 09 2019
E.g.f.: 2*exp(3*x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025