cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059509 Main diagonal of the array A059503.

Original entry on oeis.org

1, 5, 19, 66, 216, 679, 2075, 6211, 18299, 53244, 153366, 438095, 1242709, 3504161, 9830371, 27454614, 76375860, 211732471, 585157679, 1612689439, 4433421131, 12160156560, 33284285874, 90931830431, 247991356201, 675243561149, 1835863145395, 4984516006506, 13516071450384
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Crossrefs

Cf. A059503.

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(x^3 - x + 1)/(x^2 - 3*x + 1)^2, {x,0,50}], x]] (* or *) Table[((3 - n)*Fibonacci[2*n] - (5 - 8*n)*Fibonacci[2*n - 1])/5, {n, 1, 50}] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(x*(x^3-x+1)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(x^3-x+1)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) - (5 - 8*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017
E.g.f.: 1 + exp(3*x/2)*(5*(7*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x + 11)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Apr 11 2025