A316674
Number A(n,k) of paths from {0}^k to {n}^k that always move closer to {n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 13, 26, 4, 1, 1, 75, 818, 252, 8, 1, 1, 541, 47834, 64324, 2568, 16, 1, 1, 4683, 4488722, 42725052, 5592968, 26928, 32, 1, 1, 47293, 617364026, 58555826884, 44418808968, 515092048, 287648, 64, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 13, 75, 541, ...
1, 2, 26, 818, 47834, 4488722, ...
1, 4, 252, 64324, 42725052, 58555826884, ...
1, 8, 2568, 5592968, 44418808968, 936239675880968, ...
1, 16, 26928, 515092048, 50363651248560, 16811849850663255376, ...
-
A:= (n, k)-> `if`(k=0, 1, ceil(2^(n-1))*add(add((-1)^i*
binomial(j, i)*binomial(j-i, n)^k, i=0..j), j=0..k*n)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A[n_, k_] := Sum[If[k == 0, 1, Binomial[j+n-1, n]^k] Sum[(-1)^(i-j)* Binomial[i, j], {i, j, n k}], {j, 0, n k}];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 04 2021 *)
-
T(n,k)={my(m=n*k); sum(j=0, m, binomial(j+n-1,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020
A059515
Square array T(k,n) by antidiagonals, where T(k,n) is number of ways of placing n identifiable nonnegative intervals with a total of exactly k starting and/or finishing points.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 7, 1, 0, 0, 0, 12, 25, 1, 0, 0, 0, 6, 138, 79, 1, 0, 0, 0, 0, 294, 1056, 241, 1, 0, 0, 0, 0, 270, 5298, 7050, 727, 1, 0, 0, 0, 0, 90, 12780, 70350, 44472, 2185, 1, 0, 0, 0, 0, 0, 16020, 334710, 817746, 273378, 6559, 1, 0, 0, 0, 0, 0
Offset: 0
Rows are: 1,0,0,0,0,..., 0,1,1,0,0,..., 0,1,7,12,6,..., 0,1,25,138,294,..., etc. T(1,1)=1 since if a is starting point of interval and A is end point then only possibility is aA (zero length). T(2,1)=1 since possibility is a-A (positive length). T(3,2)=12 since possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
A300729
Number of arrangements on a line of n finite closed intervals (possibly of zero length) with k distinct endpoints (n >= 1, 1 <= k <= 2*n).
Original entry on oeis.org
1, 1, 1, 7, 12, 6, 1, 25, 138, 294, 270, 90, 1, 79, 1056, 5298, 12780, 16020, 10080, 2520, 1, 241, 7050, 70350, 334710, 875970, 1335600, 1184400, 567000, 113400, 1, 727, 44472, 817746, 6849900, 31500180, 87348240, 152643960, 169533000, 116235000, 44906400, 7484400
Offset: 1
Table begins
|k=0 1 2 3 4 5 6 7 8
---------------------------------------------------------
n=0 | 1
1 | 0 1 1
2 | 0 1 7 12 6
3 | 0 1 25 138 294 270 90
4 | 0 1 79 1056 5298 12780 16020 10080 2520
...
T(2,3) = 12: The 12 arrangements with 3 endpoints of two (possibly degenerate) intervals [a, A] and [b, B] are
aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB,
ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
Here, for example, the notation aA-b-B indicates a = A < b < B, so the interval [a, A] is degenerate and lies to the left of the nondegenerate interval [b, B].
Row 2: (1, 7, 12, 6)
(x*(x + 1)/2)^2 = C(x,1) + 7*C(x,2) + 12*C(x,3) + 6*C(x,4).
Row 3: (1, 25, 138, 294, 270, 90)
(x*(x + 1)/2)^3 = C(x,1) + 25*C(x,2) + 138*C(x,3) + 294*C(x,4) + 270*C(x,5) + 90*C(x,6).
Sums of powers of triangular numbers:
Sum_{i = 1..n-1} (i*(i+1)/2)^2 = C(n,2) + 7*C(n,3) + 12*C(n,4) + 6*C(n,5);
Sum_{i = 1..n-1} (i*(i+1)/2)^3 = C(n,2) + 25*C(n,3) + 138*C(n,4) + 294*C(n,5) + 270*C(n,6) + 90*C(n,7).
-
A300729 := proc (n, k)
add((-1)^(k-i)*binomial(k, i)*((1/2)*i*(i+1))^n, i = 0..k);
end proc:
for n from 0 to 8 do
seq(A300729(n, k), k = 0..2*n)
end do;
-
T[0, 0] = 1; T[n_, k_] := Sum[(-1)^(k-i)*Binomial[k, i]*((1/2)*i*(i+1))^n, {i, 0, k}]; Table[T[n, k], {n, 1, 6}, {k, 1, 2 n}] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
A059517
The sequence A059515(3,n). Number of ways of placing n identifiable nonnegative intervals with a total of exactly three starting and/or finishing points.
Original entry on oeis.org
0, 0, 12, 138, 1056, 7050, 44472, 273378, 1659936, 10018650, 60289032, 362265618, 2175188016, 13055911050, 78349815192, 470141937858, 2820980767296, 16926272024250, 101558794406952, 609356253226098, 3656147979709776, 21936919259318250, 131621609699088312
Offset: 0
a(2)=12 since if aA indicates a zero length interval and a-A one of positive length the possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
Showing 1-4 of 4 results.
Comments