A059555 Beatty sequence for 1 + gamma A001620.
1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 18, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89, 91, 93, 94, 96, 97, 99, 100, 102, 104, 105, 107, 108
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..2000
- Fraenkel, Aviezri S.; Levitt, Jonathan; Shimshoni, Michael; Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no. 4, 335-345.
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Crossrefs
Beatty complement is A059556.
Programs
-
Magma
R:=RealField(100); [Floor((1+EulerGamma(R))*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
-
Maple
A001620 := proc(n) floor((1+gamma)*n) ; end proc: seq(A001620(n),n=1..50) ; # R. J. Mathar, Nov 11 2011
-
Mathematica
t = N[Table[k*EulerGamma, {k, 1, 200}]]; u = Union[Range[200], t] Flatten[Table[Flatten[Position[u, n]], {n, 1, 100}]] (* A059556 *) Flatten[Table[Flatten[Position[u, t[[n]]]], {n, 1, 100}]] (* A059555 *) (* Clark Kimberling, Oct 21 2014 *)
-
PARI
{ default(realprecision, 100); b=1 + Euler; for (n = 1, 2000, write("b059555.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
Formula
a(n) = n + A038128(n).
Comments