A059560 Beatty sequence for 1 - 1/log(gamma).
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 47, 50, 53, 56, 59, 62, 64, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 95, 98, 101, 104, 107, 109, 112, 115, 118, 121, 124, 126, 129, 132, 135, 138, 140, 143, 146, 149, 152, 155, 157, 160, 163, 166, 169, 172
Offset: 1
References
- Fraenkel, Aviezri S.; Levitt, Jonathan; Shimshoni, Michael; Characterization of the set of values f(n)=[n alpha], n=1,2,... Discrete Math.2 (1972), no.4,335-345.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..2000
- Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Programs
-
Maple
seq( floor(n*(1-1/log(gamma))),n=0..100) ;
-
Mathematica
Floor[Range[100]*(1 - 1/Log[EulerGamma])] (* Paolo Xausa, Jul 05 2024 *)
-
PARI
{ default(realprecision, 100); b=1 + 1/log(1/Euler); for (n = 1, 2000, write("b059560.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
Formula
a(n) = floor(n*(1-1/log(gamma))). - Michel Marcus, Jan 05 2015