A059562 Beatty sequence for log(Pi)/(log(Pi)-1).
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..2000
- Aviezri S. Fraenkel, Jonathan Levitt and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
- Eric Weisstein's World of Mathematics, Beatty Sequence
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
Floor[Range[100]*(1 + 1/(Log[Pi] - 1))] (* Paolo Xausa, Jul 05 2024 *)
-
PARI
{ default(realprecision, 100); b=log(Pi)/(log(Pi) - 1); for (n = 1, 2000, write("b059562.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
-
PARI
A059562(n,c=1-1/log(Pi))=n\c \\ Use \pXX to set sufficiently large precision. - M. F. Hasler, Oct 06 2014
Formula
a(n) = floor(n*(1 + 1/(A053510 - 1))). - Paolo Xausa, Jul 05 2024