cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059562 Beatty sequence for log(Pi)/(log(Pi)-1).

Original entry on oeis.org

7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059561.
Cf. A053510.

Programs

  • Mathematica
    Floor[Range[100]*(1 + 1/(Log[Pi] - 1))] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=log(Pi)/(log(Pi) - 1); for (n = 1, 2000, write("b059562.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
    
  • PARI
    A059562(n,c=1-1/log(Pi))=n\c \\ Use \pXX to set sufficiently large precision. - M. F. Hasler, Oct 06 2014

Formula

a(n) = floor(n*(1 + 1/(A053510 - 1))). - Paolo Xausa, Jul 05 2024