cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059561 Beatty sequence for log(Pi).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

a(n) is the largest integer m such that e^m < Pi^n. - Stanislav Sykora, May 29 2015

Crossrefs

Beatty complement is A059562.
Cf. A000796 (Pi), A001113 (e), A053510 (log(Pi)).
Cf. A022932 (characteristic function).

Programs

  • Mathematica
    Floor[Range[100]*Log[Pi]] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=log(Pi); for (n = 1, 2000, write("b059561.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = A004777(n+1), 1 <= n < 83. - R. J. Mathar, Oct 05 2008
a(n) = floor(n*log(Pi)). - Michel Marcus, Jan 04 2015

A022932 a(n) is the number of powers Pi^m between e^n and e^(n+1).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Characteristic function of A059561. - Antti Karttunen, Sep 22 2017

Crossrefs

Cf. A059562 (positions of zeros after the initial a(0)=0), A059561 (of ones).

Programs

  • Mathematica
    t = Table[IntegerPart[i/Log[Pi]] - IntegerPart[(i - 1)/Log[Pi]], {i, 1000000}]; (* Hans Havermann, Sep 22 2017 *)
  • PARI
    a(n)=(n+1)\log(Pi) - n\log(Pi) \\ Charles R Greathouse IV, Jan 16 2017

Extensions

More terms from Antti Karttunen, Sep 22 2017

A249329 First row of spectral array W(log(Pi)).

Original entry on oeis.org

1, 7, 8, 55, 62, 435, 497, 3440, 3937, 27208, 31145, 215199, 246344, 1702099, 1948443, 13462620
Offset: 1

Views

Author

Colin Barker, Dec 03 2014

Keywords

Comments

log(Pi) = 1.144729885849400174143427351353058711647294812915311571513623...
The sequence is generated from the Beatty sequence (A059561) and from the complement of the Beatty sequence (A059562) for log(Pi).

Crossrefs

Programs

  • PARI
    \\ Row i of the generalized Wythoff array W(h),
    \\   where h is an irrational number between 1 and 2,
    \\   and m is the number of terms in the vectors b and c.
    row(h, i, m) = {
      if(h<=1 || h>=2, print("Invalid value for h"); return);
      my(
        b=vector(m, n, floor(n*h)),       \\ Beatty sequence for h
        c=vector(m, n, floor(n*h/(h-1))), \\ Complement of b
        w=[b[b[i]], c[b[i]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#b, w=concat(w, b[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#c, w=concat(w, c[w[j-2]]), return(w))
        );
        j++
      )
    }
    allocatemem(10^9)
    default(realprecision, 100)
    row(log(Pi), 1, 10^7)
Showing 1-3 of 3 results.