A059570 Number of fixed points in all 231-avoiding involutions in S_n.
1, 2, 6, 14, 34, 78, 178, 398, 882, 1934, 4210, 9102, 19570, 41870, 89202, 189326, 400498, 844686, 1776754, 3728270, 7806066, 16311182, 34020466, 70837134, 147266674, 305718158, 633805938, 1312351118, 2714180722, 5607318414, 11572550770, 23860929422
Offset: 1
Examples
a(3) = 6 because in the 231-avoiding involutions of {1,2,3}, i.e., in 123, 132, 213, 321, we have altogether 6 fixed points (3+1+1+1).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- Brian Hopkins, Andrew V. Sills, Thotsaporn "Aek" Thanatipanonda, and Hua Wang, Parts and subword patterns in compositions, Preprint 2015.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Programs
-
Magma
[(3*n+4)*2^n/18-2*(-1)^n/9: n in [1..40]]; // Vincenzo Librandi, May 01 2017
-
Mathematica
LinearRecurrence[{3,0,-4},{1,2,6},30] (* Harvey P. Dale, Dec 29 2013 *) Table[(3 n + 4) 2^n/18 - 2 (-1)^n/9, {n, 30}] (* Vincenzo Librandi, May 01 2017 *)
Formula
a(n) = (3*n+4)*2^n/18 - 2*(-1)^n/9.
G.f.: z*(1-z)/((1+z)*(1-2*z)^2).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n-k, k+j)*2^k. - Paul Barry, Aug 29 2004
a(n) = Sum_{k=0..n+1} (-1)^(k+1)*binomial(n+1, k+j)*A001045(k). - Paul Barry, Jan 30 2005
Convolution of "Expansion of (1-x)/(1-x-2*x^2)" (A078008) with "Powers of 2" (A000079), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
Convolution of "Difference sequence of A045623" (A045891) with "Positive integers repeated" (A008619), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
a(n) = 3*a(n-1)-4*a(n-3); a(1)=1,a(2)=2,a(3)=6. - Philippe Deléham, Aug 30 2006
Equals row sums of A128255. (1, 2, 6, 14, 34, ...) - (0, 0, 1, 2, 6, 14, 34, ...) = A045623: (1, 2, 5, 12, 28, 64, ...). - Gary W. Adamson, Feb 20 2007
Equals triangle A059260 * [1, 2, 3, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) + a(n-1) = A001792(n-1). - Gregory L. Simay, Apr 30 2017
a(n) - a(n-2) = A045623(n-1). - Gregory L. Simay, May 01 2017
a(n) = A225084(2n,n). - Alois P. Heinz, Aug 30 2018
Extensions
More terms from Eugene McDonnell (eemcd(AT)mac.com), Jan 13 2005
Comments