A059599 Expansion of (3+x)/(1-x)^6.
3, 19, 69, 189, 434, 882, 1638, 2838, 4653, 7293, 11011, 16107, 22932, 31892, 43452, 58140, 76551, 99351, 127281, 161161, 201894, 250470, 307970, 375570, 454545, 546273, 652239, 774039, 913384, 1072104, 1252152, 1455608, 1684683, 1941723
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A034263.
Programs
-
Mathematica
f[n_]:=Binomial[n+4,4]*(15+4*n)/5; Table[f[n],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
Formula
a(n) = binomial(n+4, 4)*(15+4*n)/5.
G.f.: (3+x)/(1-x)^6.
a(-n-4) = -A034263(n). - Bruno Berselli, Aug 23 2011
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Apr 16 2023
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, May 30 2010