cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059604 Coefficients of polynomials (n-1)!*P(n,k), P(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(k+i-1,k).

Original entry on oeis.org

1, 1, 2, 1, 9, 10, 1, 24, 107, 90, 1, 50, 575, 1750, 1248, 1, 90, 2135, 16050, 38244, 24360, 1, 147, 6265, 95445, 537334, 1078728, 631440, 1, 224, 15610, 424340, 4734289, 21569996, 38105220, 20865600, 1, 324, 34482, 1529640, 30128049
Offset: 1

Views

Author

Vladeta Jovovic, Jan 29 2001

Keywords

Examples

			[1],
[1, 2],
[1, 9, 10],
[1, 24, 107, 90],
[1, 50, 575, 1750, 1248],
[1, 90, 2135, 16050, 38244, 24360],
[1, 147, 6265, 95445, 537334, 1078728, 631440],
...
P(2,k) = k + 2,
P(3,k) = (1/2!)*(k^2 + 9*k + 10),
P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90).
		

Crossrefs

Programs

  • Maple
    P := (n, k) -> (n-1)!*add(Stirling2(n,i)*binomial(k+i-1,k), i=0..n):
    for n from 1 to 8 do seq(coeff(expand(P(n,x)),x,n-k), k=1..n) od; # Peter Luschny, Nov 07 2018
  • Mathematica
    row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n,i] Binomial[k+i-1,k] // FunctionExpand, {i,0,n}], k] // Reverse;
    Array[row,10] // Flatten (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    row(n)={Vec((n-1)!*sum(i=0, n, stirling(n,i,2)*binomial(x+i-1,i-1)))}
    for(n=1, 10, print(row(n))) \\ Andrew Howroyd, Nov 07 2018