A059609 Numbers k such that 2^k - 7 is prime.
39, 715, 1983, 2319, 2499, 3775, 12819, 63583, 121555, 121839, 468523, 908739
Offset: 1
Examples
k = 39, 2^39 - 7 = 549755813881 is prime.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 39, p. 15, Ellipses, Paris 2008.
- J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 395 pp. 55; 218, Ellipses Paris 2004.
- Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 46-47.
- Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, pp. 31, 75.
Links
- Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
- Jon Grantham and Andrew Granville, Fibonacci primes, primes of the form 2^n-k and beyond, arXiv:2307.07894 [math.NT], 2023.
- Henri Lifchitz and Renaud Lifchitz, Search for 2^n-7, PRP Top Records.
Crossrefs
Programs
-
Mathematica
Select[Range[3, 20000], PrimeQ[2^# - 7] &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
-
PARI
is(n)=isprime(2^n-7) \\ Charles R Greathouse IV, Feb 17 2017
Extensions
a(11) from Lelio R Paula, added by Max Alekseyev, Oct 25 2015
a(12) from Jon Grantham, Aug 09 2023