cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059712 Number of stacked directed animals on the square lattice.

Original entry on oeis.org

1, 2, 6, 19, 63, 213, 729, 2513, 8703, 30232, 105236, 366849, 1280131, 4470354, 15619386, 54595869, 190891131, 667590414, 2335121082, 8168950665, 28580354769, 100000811433, 349918126509, 1224476796543, 4285005630969
Offset: 1

Views

Author

Keywords

Comments

The generating function is simply derived from the generating function for directed animals. A triangular lattice version exists.

Examples

			x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 213*x^6 + 729*x^7 + ...
		

Crossrefs

Directed animals: A005773.

Programs

  • Maple
    gf := ((1-2*x)*(1-3*x)-(1-4*x)*sqrt((1-3*x)*(1+x)))/(2*x*(2-7*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    CoefficientList[ ((1-2*x)*(1-3*x)-(1-4*x)*Sqrt[(1-3*x)*(1+x)])/(2*x*(2-7*x)) + O[x]^30, x] // Rest (* Jean-François Alcover, Jun 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = O(x); for( k=1, ceil(n/2), A = 1/( 1/x - 2 - (2 - 7*x) / (1 - 3*x) * A)); polcoeff(A, n))} /* Michael Somos, Apr 17 2012 */

Formula

G.f.: ((1-2x)(1-3x)-(1-4x)sqrt((1-3x)(1+x)))/(2x(2-7x)).
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x ,y) = (7*x^2 - 2*x) * y^2 + (6*x^2 - 5*x + 1) * y + (3*x^2 - x). - Michael Somos, Apr 17 2012
0 = (105*n^2 + 861*n) * a(n) + (40*n^2 + 433*n + 672) * a(n+1) - (55*n^2 + 586*n + 1200) * a(n+2) + (10*n^2 + 112*n + 288) * a(n+3). - Michael Somos, Apr 17 2012
BINOMIAL transform is A059714. HANKEL transform is A001519(n+1). - Michael Somos, Apr 17 2012

Extensions

More terms from James Sellers, Feb 09 2001