A059738 Binomial transform of A054341 and inverse binomial transform of A049027.
1, 3, 10, 34, 117, 405, 1407, 4899, 17083, 59629, 208284, 727900, 2544751, 8898873, 31125138, 108881166, 380928795, 1332824049, 4663705782, 16319702046, 57109857519, 199859075307, 699435489795, 2447823832671, 8566818534141, 29982268505595, 104933418068332
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Taras Goy and Mark Shattuck, Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Programs
-
Mathematica
Table[SeriesCoefficient[2/(1-5*x+Sqrt[1-2*x-3*x^2]),{x,0,n}],{n,0,20}]
-
PARI
x='x+O('x^66); Vec(2/(1-5*x+sqrt(1-2*x-3*x^2))) \\ Joerg Arndt, May 06 2013
Formula
a(n) = Sum[k=0..n, 2^(n-k)*A026300(n, k) ], where A026300 is the Motzkin triangle. - Ralf Stephan, Jan 25 2005 [Corrected by Philippe Deléham, Nov 29 2009]
a(n)= A126954(n,0). [Philippe Deléham, Nov 24 2009]
G.f.: 2/(1-5*x+sqrt(1-2*x-3*x^2)). - Emeric Deutsch, May 02 2011
Recurrence: 2*(n+1)*a(n) = (11*n+5)*a(n-1) - (8*n+5)*a(n-2) - 21*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ 3*7^n/2^(n+2). - Vaclav Kotesovec, Oct 11 2012
G.f.: 1/(1 - 3*x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
Extensions
More terms from Vincenzo Librandi, May 06 2013
Comments