cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059758 Undulating palindromic primes: numbers that are prime, palindromic in base 10, and the digits alternate: ababab... with a != b.

Original entry on oeis.org

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 18181, 32323, 35353, 72727, 74747, 78787, 94949, 95959, 1212121, 1616161, 323232323, 383838383, 727272727, 919191919, 929292929, 979797979, 989898989
Offset: 1

Views

Author

Jeff Heleen, Feb 11 2001

Keywords

References

  • C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
  • C. W. Trigg, Palindromic Octagonal Numbers, Journal of Recreational Mathematics, 15:1, pp. 41-46, 1982-83.

Crossrefs

Cf. A032758.

Programs

  • Maple
    for l from 3 to 31 by 2 do for i from 0 to 9 do for j from 0 to 9 do it1 := sum(i*10^(2*k), k=0..(l-1)/2): it2 := sum(j*10^(2*k+1), k=0..(l-3)/2): if isprime(it1+it2) and i<>j then printf(`%d, `,it1+it2) fi: od: od: od: # James Sellers, Feb 13 2001
  • Mathematica
    t = {}; t1 = {1, 3, 7, 9}; Do[p = 10 a + b; q = 10 b + a; t = Join[t, Select[Table[(p*10^(2 n + 1) - q)/99, {n, 4}], PrimeQ]], {a, t1}, {b, Range[0, 9]}]; Union[t] (* Jayanta Basu, Jun 23 2013 *)
    uppQ[n_]:=Module[{idn=IntegerDigits[n]},OddQ[Length[idn]]&& PalindromeQ[ n] && Length[Union[Partition[idn,2]]]==1]; Select[Prime[Range[ 51*10^6]], uppQ] (* or *) Select[FromDigits/@Flatten[Table[Riffle[Table[n,i],k],{n,{1,3,7,9}},{i,5},{k,0,9}],2],#>9&&PrimeQ[#]&]//Sort (* The second program is significantly faster than the first. *) (* Harvey P. Dale, Feb 24 2018 *)
  • Python
    from sympy import isprime
    A059758_list = []
    for l in range(1,300):
        for a in '1379':
            for b in '0123456789':
                if a != b:
                    p = int((a+b)*l+a)
                    if isprime(p):
                        A059758_list.append(p) # Chai Wah Wu, Dec 21 2014

Extensions

More terms from James Sellers, Feb 13 2001