cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059849 Number of pairs of partitions of {1,2,...,n} whose meet is the partition {{1}, {2}, ..., {n}}.

Original entry on oeis.org

1, 1, 3, 15, 113, 1153, 15125, 245829, 4815403, 111308699, 2985997351, 91712874487, 3189130896077, 124366296990757, 5395176819674205, 258547307299130037, 13603419571939001827, 781604484498111072195, 48806254671145521802863, 3298007680091577596528415
Offset: 0

Views

Author

E. R. Canfield (erc(AT)cs.uga.edu), Feb 26 2001

Keywords

Examples

			a(2) = 3 because there are two partitions of {1,2} and of the four possible pairs, only the pair ( {{1,2}}, {{1,2}} ) fails to have meet equal to {{1},{2}}.
		

Crossrefs

Cf. Bell numbers A000110. Also A007311 and Stirling numbers of the second kind, A000225.

Programs

  • Mathematica
    a[n_] := Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; Array[a, 20] (* Robert G. Wilson v, Jul 24 2018 *)
  • PARI
    /* From Vladeta Jovovic's formula: */
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)^2)}

Formula

E.g.f. M(x) satisfies the equation M(exp(x)-1) = Sum_{n>=0} (B_n)^2 * x^n/n!, where B_n is the n-th Bell number (A000110).
E.g.f.: Sum_{n>=0} exp( (1+x)^n - 2 ) / n!. - Paul D. Hanna, Jul 24 2018
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k)^2. - Vladeta Jovovic, Oct 01 2003

Extensions

More terms from Vladeta Jovovic, Mar 04 2001