A033091
Incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).
Original entry on oeis.org
0, 1, 2, 4, 13, 40, 49, 65, 399, 2076, 11626, 12156, 12190, 16992, 87983, 717895, 2186175, 4327480, 7928565, 8130547, 12139891, 54517279, 67728780, 264656137, 410041022, 2970688427, 13126642049, 19585729892, 71713995073
Offset: 0
Cf.
A002852 (continued fraction for Euler's constant).
Cf.
A033092 (positions of incrementally largest terms in c.f.).
Cf.
A001620 (decimal expansion of Euler's constant).
More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com) and (independently)
Eric W. Weisstein, Oct 25 2004
A098967
Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.
Original entry on oeis.org
5, 7, 72, 156, 649, 1532, 8606, 65120, 90082, 402431, 421593, 3593992, 3598805, 7672348, 8486772, 67776646, 70936947, 632917467, 4951463144, 7249807082, 48096050401, 448654283622, 4173997644923, 5362535003337, 42937337737673
Offset: 0
Sam Handler (shandler(AT)Macalester.edu), Oct 25 2004
0.57721566490153286060651209008240243104215933593992359880576723488...
-
f[n_] := Block[{ts = StringDrop[ ToString[ N[n, 250]], 2], a = {}, d = 0, k = 1}, While[ ToExpression[ts] > d, While[d >= ToExpression[ StringTake[ts, k]], k++ ]; te = ToExpression[ StringTake[ts, k]]; d = te; AppendTo[a, te]; ts = StringDrop[ts, k]; If[k > 1, k-- ]]; a]; f[EulerGamma] (* Robert G. Wilson v, Nov 01 2004 *)
Showing 1-2 of 2 results.
Comments