cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002852 Continued fraction for Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, 1, 10, 1, 1, 1, 1, 2, 1, 1, 3, 1, 4, 1, 1, 2, 5, 1, 3, 6, 2, 1, 2, 1, 1, 1, 2, 1, 3, 16, 8, 1, 1, 2, 16, 6, 1, 2, 2, 1, 7, 2, 1, 1, 1, 3, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The first 970258158 terms were computed by Eric W. Weisstein on Sep 21 2011 using a developmental version of Mathematica.
The first 4851382841 terms were computed by Eric W. Weisstein on Jul 22 2013 using a developmental version of Mathematica.
The first 16695279010 terms were computed by Syed Fahad on Apr 29 2021, see link.

Examples

			0.577215664901532860606512090082402431042...
0 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(4 + 1/(3 + 1/(13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001620, the decimal expansion, which has many more references.
See also A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A033091 (incrementally largest terms), A033092 (positions of incrementally largest terms).
Cf. A033149 (positions of first occurrence of n in the continued fraction).

Programs

  • Magma
    ContinuedFraction(EulerGamma(100)); // Vincenzo Librandi, Oct 19 2017
  • Mathematica
    ContinuedFraction[EulerGamma, 100]
  • PARI
    default(realprecision, 11000); x=contfrac(Euler); for (n=0, 10000, write("b002852.txt", n, " ", x[n+1])) \\ Harry J. Smith, Apr 14 2009
    

Extensions

More terms from Robert G. Wilson v, Dec 08 2000

A033092 Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 31, 34, 40, 529, 5041, 15347, 25318, 28321, 33261, 158568, 273272, 3233049, 4198630, 11925232, 21988970, 27999430, 130169954, 133517598, 560882701, 1060718271, 1158300012, 1183752952, 3652709607
Offset: 0

Views

Author

Keywords

Comments

This sequence assumes nonstandard indexing of c.f. terms as [a_1; a_2, a_3, ...].
No other maximum term occurs in the first 4,851,382,841 terms of the c.f. - Eric W. Weisstein, Jul 22 2013

Crossrefs

Cf. A224849 (= a(n) - 1).
Cf. A002852 (continued fraction for Euler's constant).
Cf. A033091 (values of incrementally largest terms in c.f.).
Cf. A001620 (decimal expansion of Euler's constant).
Cf. A098967.

Formula

a(n) = A224849(n) + 1.

Extensions

More terms from Eric W. Weisstein, Oct 25 2004
More terms from Eric W. Weisstein, Jan 02 2007
a(22) and a(23) from Eric W. Weisstein, Dec 09 2010
a(24) from Eric W. Weisstein, Sep 21 2011
a(25)-a(28) from Eric W. Weisstein, Jul 22 2013

A098967 Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.

Original entry on oeis.org

5, 7, 72, 156, 649, 1532, 8606, 65120, 90082, 402431, 421593, 3593992, 3598805, 7672348, 8486772, 67776646, 70936947, 632917467, 4951463144, 7249807082, 48096050401, 448654283622, 4173997644923, 5362535003337, 42937337737673
Offset: 0

Views

Author

Sam Handler (shandler(AT)Macalester.edu), Oct 25 2004

Keywords

Examples

			0.57721566490153286060651209008240243104215933593992359880576723488...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{ts = StringDrop[ ToString[ N[n, 250]], 2], a = {}, d = 0, k = 1}, While[ ToExpression[ts] > d, While[d >= ToExpression[ StringTake[ts, k]], k++ ]; te = ToExpression[ StringTake[ts, k]]; d = te; AppendTo[a, te]; ts = StringDrop[ts, k]; If[k > 1, k-- ]]; a]; f[EulerGamma] (* Robert G. Wilson v, Nov 01 2004 *)

Extensions

Corrected and extended by Robert G. Wilson v, Nov 01 2004

A059856 Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into minimal chunks so that chunks have increasing length and do not begin with zero.

Original entry on oeis.org

5, 77, 215, 66490, 1532860, 6065120900, 82402431042, 159335939923, 5988057672348, 84867726777664, 670936947063291, 7467495146314472, 498070824809605040, 1448654283622417399, 76449235362535003337
Offset: 0

Views

Author

Jason Earls, Feb 27 2001

Keywords

Examples

			0.5772156649015328606065120900824024310421593359399235...
		

Crossrefs

Extensions

More terms from Tracy Poff (tracy.poff(AT)gmail.com), Apr 15 2005

A224849 Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

Original entry on oeis.org

0, 1, 3, 7, 9, 19, 30, 33, 39, 528, 5040, 15346, 25317, 28320, 33260, 158567, 273271, 3233048, 4198629, 11925231, 21988969, 27999429, 130169953, 133517597, 560882700, 1060718270, 1158300011, 1183752951, 3652709606
Offset: 0

Views

Author

Eric W. Weisstein, Jul 22 2013

Keywords

Comments

This sequence is the same as A033092 except uses the correct indexing convention [a_0; a_1, ...] for the c.f.

Crossrefs

Cf. A033092 (= a(n) + 1).
Cf. A033091 (increamentally largest terms).
Cf. A002852 (continued fraction of gamma).

Formula

a(n) = A033092(n) - 1.
Showing 1-5 of 5 results.