cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A033091 Incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

Original entry on oeis.org

0, 1, 2, 4, 13, 40, 49, 65, 399, 2076, 11626, 12156, 12190, 16992, 87983, 717895, 2186175, 4327480, 7928565, 8130547, 12139891, 54517279, 67728780, 264656137, 410041022, 2970688427, 13126642049, 19585729892, 71713995073
Offset: 0

Views

Author

Keywords

Comments

a(28)=71713995073 is the largest of the first 4851382841 terms of the c.f. - Eric W. Weisstein, Jul 22 2013
a(28)=71713995073 is the largest of the first 16695279010 terms of the c.f. - Syed Fahad, May 05 2021

Crossrefs

Cf. A002852 (continued fraction for Euler's constant).
Cf. A033092 (positions of incrementally largest terms in c.f.).
Cf. A001620 (decimal expansion of Euler's constant).
Cf. A098967.

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com) and (independently) Eric W. Weisstein, Oct 25 2004
More terms from Eric W. Weisstein, Jan 02 2007
a(22) and a(23) from Eric W. Weisstein, Dec 09 2010
a(24) from Eric W. Weisstein, Sep 21 2011
a(25)-a(28) from Eric W. Weisstein, Jul 22 2013

A033092 Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 31, 34, 40, 529, 5041, 15347, 25318, 28321, 33261, 158568, 273272, 3233049, 4198630, 11925232, 21988970, 27999430, 130169954, 133517598, 560882701, 1060718271, 1158300012, 1183752952, 3652709607
Offset: 0

Views

Author

Keywords

Comments

This sequence assumes nonstandard indexing of c.f. terms as [a_1; a_2, a_3, ...].
No other maximum term occurs in the first 4,851,382,841 terms of the c.f. - Eric W. Weisstein, Jul 22 2013

Crossrefs

Cf. A224849 (= a(n) - 1).
Cf. A002852 (continued fraction for Euler's constant).
Cf. A033091 (values of incrementally largest terms in c.f.).
Cf. A001620 (decimal expansion of Euler's constant).
Cf. A098967.

Formula

a(n) = A224849(n) + 1.

Extensions

More terms from Eric W. Weisstein, Oct 25 2004
More terms from Eric W. Weisstein, Jan 02 2007
a(22) and a(23) from Eric W. Weisstein, Dec 09 2010
a(24) from Eric W. Weisstein, Sep 21 2011
a(25)-a(28) from Eric W. Weisstein, Jul 22 2013

A224849 Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

Original entry on oeis.org

0, 1, 3, 7, 9, 19, 30, 33, 39, 528, 5040, 15346, 25317, 28320, 33260, 158567, 273271, 3233048, 4198629, 11925231, 21988969, 27999429, 130169953, 133517597, 560882700, 1060718270, 1158300011, 1183752951, 3652709606
Offset: 0

Views

Author

Eric W. Weisstein, Jul 22 2013

Keywords

Comments

This sequence is the same as A033092 except uses the correct indexing convention [a_0; a_1, ...] for the c.f.

Crossrefs

Cf. A033092 (= a(n) + 1).
Cf. A033091 (increamentally largest terms).
Cf. A002852 (continued fraction of gamma).

Formula

a(n) = A033092(n) - 1.

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A080130 Decimal expansion of exp(-gamma).

Original entry on oeis.org

5, 6, 1, 4, 5, 9, 4, 8, 3, 5, 6, 6, 8, 8, 5, 1, 6, 9, 8, 2, 4, 1, 4, 3, 2, 1, 4, 7, 9, 0, 8, 8, 0, 7, 8, 6, 7, 6, 5, 7, 1, 0, 3, 8, 6, 9, 2, 5, 1, 5, 3, 1, 6, 8, 1, 5, 4, 1, 5, 9, 0, 7, 6, 0, 4, 5, 0, 8, 7, 9, 6, 7, 0, 7, 4, 2, 8, 5, 6, 3, 7, 1, 3, 2, 8, 7, 1, 1, 5, 8, 9, 3, 4, 2, 1, 4, 3, 5, 8, 7, 6, 7, 3, 1
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

By Mertens's third theorem, lim_{k->oo} (H_{k-1}*Product_{prime p<=k} (1-1/p)) = exp(-gamma), where H_n is the n-th harmonic number. Let F(x) = lim_{n->oo} ((Sum_{k<=n} 1/k^x)*(Product_{prime p<=n} (1-1/p^x))) for real x in the interval 0 < x < 1. Consider the function F(s) of the complex variable s, but without the analytic continuation of the zeta function, in the critical strip 0 < Re(s) < 1. - Thomas Ordowski, Jan 26 2023

Examples

			0.56145948356688516982414321479088078676571...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.5 p. 29, 2.7 p. 117 and 5.4 p. 285.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(-EulerGamma(R)); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(exp(-gamma), 120);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    RealDigits[N[Exp[-EulerGamma], 200]][[1]] (* Arkadiusz Wesolowski, Aug 26 2012 *)
  • PARI
    default(realprecision, 100); exp(-Euler) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals lim inf_{n->oo} phi(n)*log(log(n))/n. - Arkadiusz Wesolowski, Aug 26 2012
From Alois P. Heinz, Dec 05 2018: (Start)
Equals lim_{n->oo} A322364(n)/(n*A322365(n)).
Equals lim_{n->oo} A322380(n)/A322381(n). (End)
Equals lim_{k->oo} log(k)*Product_{prime p<=k} (1-1/p). - Amiram Eldar, Jul 09 2020
Equals lim_{n->oo} A007838(n)/A000142(n). - Alois P. Heinz, Feb 24 2022
Equals Product_{k>=1} (1+1/k)*exp(-1/k). - Amiram Eldar, Mar 20 2022
Equals A001113^(-A001620). - Omar E. Pol, Dec 14 2022
Equals lim_{n->oo} (A001008(p_n-1)/A002805(p_n-1))*(A038110(n+1)/A060753(n+1)), where p_n = A000040(n). - Thomas Ordowski, Jan 26 2023

A046115 Denominators of convergents to Euler-Mascheroni constant.

Original entry on oeis.org

1, 1, 2, 5, 7, 19, 26, 123, 395, 5258, 26685, 31943, 58628, 500967, 559595, 1620157, 7040223, 8660380, 15700603, 636684500, 652385103, 7812920633, 24091147002, 176450949647, 200542096649, 1580245626190, 1780787722839, 3361033349029
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[EulerGamma, 50]] (* G. C. Greubel, Aug 30 2018 *)

A098967 Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.

Original entry on oeis.org

5, 7, 72, 156, 649, 1532, 8606, 65120, 90082, 402431, 421593, 3593992, 3598805, 7672348, 8486772, 67776646, 70936947, 632917467, 4951463144, 7249807082, 48096050401, 448654283622, 4173997644923, 5362535003337, 42937337737673
Offset: 0

Views

Author

Sam Handler (shandler(AT)Macalester.edu), Oct 25 2004

Keywords

Examples

			0.57721566490153286060651209008240243104215933593992359880576723488...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{ts = StringDrop[ ToString[ N[n, 250]], 2], a = {}, d = 0, k = 1}, While[ ToExpression[ts] > d, While[d >= ToExpression[ StringTake[ts, k]], k++ ]; te = ToExpression[ StringTake[ts, k]]; d = te; AppendTo[a, te]; ts = StringDrop[ts, k]; If[k > 1, k-- ]]; a]; f[EulerGamma] (* Robert G. Wilson v, Nov 01 2004 *)

Extensions

Corrected and extended by Robert G. Wilson v, Nov 01 2004

A346589 Decimal expansion of the real principal square root of the Euler-Mascheroni constant.

Original entry on oeis.org

7, 5, 9, 7, 4, 7, 1, 0, 5, 8, 8, 5, 5, 9, 1, 9, 4, 6, 2, 9, 7, 8, 6, 6, 4, 4, 2, 5, 0, 1, 7, 8, 4, 3, 7, 3, 3, 8, 4, 9, 6, 3, 5, 7, 6, 1, 1, 9, 5, 1, 2, 6, 7, 7, 5, 9, 1, 3, 3, 2, 0, 2, 7, 9, 3, 5, 3, 6, 1, 2, 8, 1, 4, 9, 4, 2, 4, 1, 7, 6, 5, 2, 4, 5, 1, 6, 5, 2, 3, 2, 2, 4, 1, 6, 9, 7, 6, 6, 6, 2, 9, 1, 9, 3, 5, 5
Offset: 0

Views

Author

Christoph B. Kassir, Jul 24 2021

Keywords

Examples

			0.75974710588559194629786644250178437338496357611951...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[EulerGamma], 10, 100][[1]] (* Amiram Eldar, Jul 25 2021 *)
  • PARI
    sqrt(Euler) \\ Michel Marcus, Jul 25 2021

Formula

Equals sqrt(A001620).

Extensions

More terms from Jon E. Schoenfield, Jul 25 2021

A046114 Numerators of convergents to Euler-Mascheroni constant.

Original entry on oeis.org

0, 1, 1, 3, 4, 11, 15, 71, 228, 3035, 15403, 18438, 33841, 289166, 323007, 935180, 4063727, 4998907, 9062634, 367504267, 376566901, 4509740178, 13905787435, 101850252223, 115756039658, 912142529829, 1027898569487, 1940041099316
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[EulerGamma, 50]] (* G. C. Greubel, Aug 30 2018 *)

A096622 Harmonic expansion (or factorial expansion) of the Euler-Mascheroni constant.

Original entry on oeis.org

0, 1, 0, 1, 4, 1, 4, 1, 3, 0, 2, 3, 0, 5, 14, 12, 16, 14, 7, 13, 18, 17, 19, 11, 22, 13, 13, 26, 12, 16, 2, 26, 1, 2, 28, 18, 3, 27, 31, 27, 9, 7, 37, 28, 13, 26, 2, 34, 29, 47, 49, 34, 39, 10, 0, 42, 1, 9, 42, 1, 32, 61, 23, 57, 42, 32, 2, 12, 32, 32, 48, 42, 49, 15, 14, 39, 48
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Examples

			Euler gamma = 0 + 1/2! + 0/3! + 1/4! + 4/5! + 1/6! + 4/7! + 1/8! + ...
		

Crossrefs

Cf. A001620 (decimal expansion), A002852 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(EulerGamma(250))] cat [Floor(Factorial(n)*EulerGamma(250)) - n*Floor(Factorial((n-1))*EulerGamma(250)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = EulerGamma}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = Euler; for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    b = euler_gamma;
    def A096622(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [A096622(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

Sum_{n>=1} a(n)/n! = Euler gamma = A001620. - G. C. Greubel, Nov 26 2018
Showing 1-10 of 20 results. Next