A059886 a(n) = |{m : multiplicative order of 4 mod m=n}|.
2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1
Keywords
Examples
a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1128 (first 160 terms from Alois P. Heinz)
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)): seq(a(n), n=1..60); # Alois P. Heinz, Oct 12 2012
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
-
PARI
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025
Comments