A059928 The periodic point counting sequence for the toral automorphism given by the polynomial of (conjectural) smallest Mahler measure. The map is x -> Ax mod 1 for x in [0,1)^10, where A is the companion matrix for the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.
1, 1, 1, 9, 1, 1, 1, 9, 1, 1, 1, 81, 1, 169, 841, 9, 1, 1, 1369, 9, 1, 529, 1, 81, 2401, 625, 1, 1521, 1, 841, 1024, 8649, 4489, 1, 5041, 729, 1, 1369, 6241, 9, 6889, 169, 29929, 4761, 841, 2209, 1, 178929, 85849, 2401, 10609, 5625, 100489, 2809, 11881, 1521, 1369
Offset: 1
Keywords
Examples
The first term is 1 because Ax=x implies x=0 (since A-I) is invertible. Thus there is only one fixed point for the map.
References
- G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
Links
- Manfred Einsiedler, Graham Everest and Thomas Ward, Primes in sequences associated to polynomials (after Lehmer), LMS J. Comput. Math. 3 (2000), 125-139.
- G. Everest and T. Ward, Primes in Divisibility Sequences, Cubo Matematica Educacional (2001), 3 (2), pp. 245-259.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index to divisibility sequences
Programs
-
Mathematica
CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], -1]; deg=Length[cl]; If[deg==1, {-cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ -1]]=-cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, x]; im=IdentityMatrix[10]; tmp=im; Table[tmp=tmp.c; Abs[Det[tmp-im]], {n, 100}] (From T. D. Noe)
-
PARI
comp(pol) = my(v=Vec(pol), nn=poldegree(pol)); matrix(nn, nn, n, k, if (k==nn, -v[n], if(k==n-1, 1))); id(nn) = matrix(nn, nn, n, k, n==k); a(n) = my(p=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, m=comp(p)); abs(matdet(m^n-id(poldegree(p)))); \\ Michel Marcus, Nov 23 2022
Formula
The n-th term is abs(det(A^n-I)) where I is the 10 by 10 identity matrix and A is the companion matrix to the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.
Extensions
More terms from T. D. Noe, Sep 15 2003
Comments