cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A087612 A divisibility sequence derived from Lehmer's polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1. Square root of the terms in A059928.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 13, 29, 3, 1, 1, 37, 3, 1, 23, 1, 9, 49, 25, 1, 39, 1, 29, 32, 93, 67, 1, 71, 27, 1, 37, 79, 3, 83, 13, 173, 69, 29, 47, 1, 423, 293, 49, 103, 75, 317, 53, 109, 39, 37, 59, 1297, 261, 367, 1024, 1, 93, 1, 1541, 269, 201, 277, 923, 283, 1917
Offset: 1

Views

Author

T. D. Noe, Sep 15 2003

Keywords

Comments

The sequence is conjectured to contain an infinite number of primes. The first 100 terms contain 33 unique primes. As stated by Everest and Ward, except for a finite number of composite n, a(n) can be prime only if n is prime. For this sequence, n=23*47 is the largest composite for which a(n) is prime.

References

  • M. Einsiedler, G. Everest, T. Ward, Primes in sequences associated to polynomials, LMS J. Comp. Math. 3 (2000), 15-29
  • G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.

Crossrefs

Cf. A059928.

Programs

  • Mathematica
    CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], -1]; deg=Length[cl]; If[deg==1, {-cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ -1]]=-cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, x]; im=IdentityMatrix[10]; tmp=im; Table[tmp=tmp.c; Sqrt[Abs[Det[tmp-im]]], {n, 100}]

A060478 Number of orbits of length n in map whose periodic points are A059928.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 12, 56, 0, 0, 0, 72, 0, 0, 24, 0, 0, 96, 24, 0, 48, 0, 0, 33, 270, 136, 0, 144, 18, 0, 0, 160, 0, 168, 0, 696, 96, 0, 48, 0, 3726, 1752, 0, 208, 96, 1896, 52, 216, 0, 0, 60, 28512, 1120, 2208, 16896, 0, 0, 0, 35904, 1080, 594, 1112, 12096
Offset: 1

Views

Author

Keywords

References

  • G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.

Crossrefs

Cf. A059928.

Programs

  • PARI
    comp(pol) = my(v=Vec(pol), nn=poldegree(pol)); matrix(nn, nn, n, k, if (k==nn, -v[n], if(k==n-1, 1)));
    id(nn) = matrix(nn, nn, n, k, n==k);
    b(n) = my(p=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, m=comp(p)); abs(matdet(m^n-id(poldegree(p)))); \\ A059928
    a(n) = sumdiv(n, d, moebius(d)*b(n/d))/n; \\ Michel Marcus, Nov 23 2022

Formula

a(n) = (1/n) * Sum_{ d divides n } mu(d) * A059928(n/d).

Extensions

More terms from T. D. Noe, Sep 15 2003
Showing 1-2 of 2 results.