A087612 A divisibility sequence derived from Lehmer's polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1. Square root of the terms in A059928.
1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 13, 29, 3, 1, 1, 37, 3, 1, 23, 1, 9, 49, 25, 1, 39, 1, 29, 32, 93, 67, 1, 71, 27, 1, 37, 79, 3, 83, 13, 173, 69, 29, 47, 1, 423, 293, 49, 103, 75, 317, 53, 109, 39, 37, 59, 1297, 261, 367, 1024, 1, 93, 1, 1541, 269, 201, 277, 923, 283, 1917
Offset: 1
Keywords
References
- M. Einsiedler, G. Everest, T. Ward, Primes in sequences associated to polynomials, LMS J. Comp. Math. 3 (2000), 15-29
- G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
Links
- G. Everest and T. Ward, Primes in Divisibility Sequences, Cubo Matematica Educacional (2001), 3 (2), pp. 245-259.
- Index to divisibility sequences
Crossrefs
Cf. A059928.
Programs
-
Mathematica
CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], -1]; deg=Length[cl]; If[deg==1, {-cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ -1]]=-cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, x]; im=IdentityMatrix[10]; tmp=im; Table[tmp=tmp.c; Sqrt[Abs[Det[tmp-im]]], {n, 100}]
Comments