cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143335 Expansion of (1 - 2*x^3 - x^4 - 2*x^5 - x^6 - x^7 - x^8 + 2*x^9)/(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10).

Original entry on oeis.org

1, -1, 1, -2, 1, -2, 0, -1, -3, 2, -6, 1, -4, -3, -3, -5, -4, -7, -6, -9, -8, -14, -10, -18, -18, -20, -28, -27, -38, -39, -50, -57, -67, -79, -94, -109, -128, -154, -175, -213, -244, -292, -341, -400, -475, -553, -655, -768, -905, -1062, -1253, -1470, -1732
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 22 2008

Keywords

Comments

Shares the same 10th-order "Salem" linear recurrence with A029826, A173243 and A125950.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1-2*x^3-x^4 -2*x^5-x^6-x^7-x^8+2*x^9)/(1+x-x^3-x^4-x^5-x^6-x^7+x^9 +x^10) )); // G. C. Greubel, Nov 03 2018
  • Maple
    seq(coeff(series((1-2*x^3-x^4 -2*x^5-x^6-x^7-x^8+2*x^9)/(1+x-x^3-x^4-x^5-x^6-x^7 +x^9+x^10), x, n+1), x, n), n = 0..65); # G. C. Greubel, Mar 13 2020
  • Mathematica
    LinearRecurrence[{-1,0,1,1,1,1,1,0,-1,-1}, {1,-1,1,-2,1,-2,0,-1,-3,2}, 65] (* Franck Maminirina Ramaharo, Nov 02 2018 *)
  • PARI
    my(x='x+O('x^65)); Vec((1-2*x^3-x^4-2*x^5-x^6-x^7-x^8+2*x^9)/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10)) \\ G. C. Greubel, Nov 03 2018
    

Formula

a(n) = -a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10). - Franck Maminirina Ramaharo, Nov 02 2018

Extensions

Edited by Assoc. Eds. of the OEIS - Jun 30 2010

A059928 The periodic point counting sequence for the toral automorphism given by the polynomial of (conjectural) smallest Mahler measure. The map is x -> Ax mod 1 for x in [0,1)^10, where A is the companion matrix for the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 1, 1, 1, 81, 1, 169, 841, 9, 1, 1, 1369, 9, 1, 529, 1, 81, 2401, 625, 1, 1521, 1, 841, 1024, 8649, 4489, 1, 5041, 729, 1, 1369, 6241, 9, 6889, 169, 29929, 4761, 841, 2209, 1, 178929, 85849, 2401, 10609, 5625, 100489, 2809, 11881, 1521, 1369
Offset: 1

Views

Author

Graham Everest (g.everest(AT)uea.ac.uk), Mar 01 2001

Keywords

Comments

It is expected that the sequence contains infinitely many squares of primes. The heuristics for the Mersenne sequence can be adapted to show that approximately c log N of the first N terms should be prime. The paper Einsiedler, Everest, Ward gives supporting numerical evidence.
The terms in this sequence are all squares. The sequence of square roots, A087612, is conjectured to contain an infinite number of primes. - T. D. Noe, Sep 15 2003

Examples

			The first term is 1 because Ax=x implies x=0 (since A-I) is invertible. Thus there is only one fixed point for the map.
		

References

  • G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.

Crossrefs

Programs

  • Mathematica
    CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], -1]; deg=Length[cl]; If[deg==1, {-cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ -1]]=-cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, x]; im=IdentityMatrix[10]; tmp=im; Table[tmp=tmp.c; Abs[Det[tmp-im]], {n, 100}] (From T. D. Noe)
  • PARI
    comp(pol) = my(v=Vec(pol), nn=poldegree(pol)); matrix(nn, nn, n, k, if (k==nn, -v[n], if(k==n-1, 1)));
    id(nn) = matrix(nn, nn, n, k, n==k);
    a(n) = my(p=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, m=comp(p)); abs(matdet(m^n-id(poldegree(p)))); \\ Michel Marcus, Nov 23 2022

Formula

The n-th term is abs(det(A^n-I)) where I is the 10 by 10 identity matrix and A is the companion matrix to the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.

Extensions

More terms from T. D. Noe, Sep 15 2003
Showing 1-2 of 2 results.