A059933 Goodstein sequence starting with 16: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1.
16, 7625597484986, 50973998591214355139406377, 53793641718868912174424175024032593379100060, 19916489515870532960258562190639398471599239042185934648024761145811, 5103708485122940631839901111036829791435007685667303872450435153015345686896530517814322070729709
Offset: 0
Examples
a(0) = 16 = 2^(2^2) so a(1) = 3^(3^3)-1 = 7625597484986. So a(1) = 2*3^(2*3^2 + 2*3 + 2) + 2*3^(2*3^2 + 2*3 + 1) + 2*3^(2*3^2 + 2*3) + 2*3^(2*3^2 + 1*3 + 2) + 2*3^(2*3^2 + 1*3 + 1) + 2*3^(2*3^2 + 1*3) + 2*3^(2*3^2 + 2) + 2*3^(2*3^2 + 1) + 2*3^(2*3^2) + 2*3^(3^2 + 2*3 + 2) + 2*3^(3^2 + 2*3 + 1) + 2*3^(3^2 + 2*3) + 2*3^(3^2 + 1*3 + 2) + 2*3^(3^2 + 1*3 + 1) + 2*3^(3^2 + 1*3) + 2*3^(3^2 + 2) + 2*3^(3^2 + 1) + 2*3^(3^2) + 2*3^(2*3 + 2) + 2*3^(2*3 + 1) + 2*3^(2*3) + 2*3^(1*3 + 2) + 2*3^(1*3 + 1) + 2*3^(1*3) + 2*3^(2) + 2*3^(1) + 2, leading to a(2) = 2*4^(2*4^2 + 2*4 + 2) + 2*4^(2*4^2 + 2*4 + 1) + 2*4^(2*4^2 + 2*4) + 2*4^(2*4^2 + 1*4 + 2) + 2*4^(2*4^2 + 1*4 + 1) + 2*4^(2*4^2 + 1*4) + 2*4^(2*4^2 + 2) + 2*4^(2*4^2 + 1) + 2*4^(2*4^2) + 2*4^(4^2 + 2*4 + 2) + 2*4^(4^2 + 2*4 + 1) + 2*4^(4^2 + 2*4) + 2*4^(4^2 + 1*4 + 2) + 2*4^(4^2 + 1*4 + 1) + 2*4^(4^2 + 1*4) + 2*4^(4^2 + 2) + 2*4^(4^2 + 1) + 2*4^(4^2) + 2*4^(2*4 + 2) + 2*4^(2*4 + 1) + 2*4^(2*4) + 2*4^(1*4 + 2) + 2*4^(1*4 + 1) + 2*4^(1*4) + 2*4^(2) + 2*4^(1) + 1 = 2*(4^32 + 4^16 + 1)*(4^8 + 4^4 + 1)*(4^2 + 4*1)-1 = 50973998591214355139406377.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..18
- R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Crossrefs
Programs
-
Haskell
-- See Link
-
PARI
bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n))); my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); } lista(nn) = {print1(a = 16, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016
-
PARI
(B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#n1,B(a,n)-1,16)) \\ M. F. Hasler, Feb 12 2017
Formula
a(n) = G_n(16), where G is the function defined in A266201.
Extensions
Definition corrected by N. J. A. Sloane, Mar 06 2006
Missing a(5) inserted and wrong a(7) replaced by Reinhard Zumkeller, Feb 13 2013
Revised by Natan Arie Consigli, Jan 23 2016
Offset changed to 0 by Nicholas Matteo, Aug 21 2019
Comments