cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059443 Triangle T(n,k) (n >= 2, k = 3..n+floor(n/2)) giving number of bicoverings of an n-set with k blocks.

Original entry on oeis.org

1, 4, 4, 13, 39, 25, 3, 40, 280, 472, 256, 40, 121, 1815, 6185, 7255, 3306, 535, 15, 364, 11284, 70700, 149660, 131876, 51640, 8456, 420, 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105, 3280, 416560, 7894992, 44659776, 103290096
Offset: 2

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			T(2,3) = 1: 1|12|2.
T(3,3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2.
T(3,4) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
Triangle T(n,k) begins:
:    1;
:    4,     4;
:   13,    39,     25,       3;
:   40,   280,    472,     256,      40;
:  121,  1815,   6185,    7255,    3306,     535,     15;
:  364, 11284,  70700,  149660,  131876,   51640,   8456,    420;
: 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums are A002718.
Main diagonal gives A275517.
Right border gives A275521.

Programs

  • Mathematica
    nmax = 8; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[ Series[ egf , {y, 0, imax}], y]*Range[0, imax]!; row[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3]; Table[ row[n], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Sep 21 2012 *)
  • PARI
    \ps 22;
    s = 8; pv = vector(s); for(n=1,s,pv[n]=round(polcoeff(f(x,y),n,y)*n!));
    for(n=1,s,for(m=3,poldegree(pv[n],x),print1(polcoeff(pv[n],m),", "))) \\ Gerald McGarvey, Dec 03 2009

Formula

E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
T(n, k) = Sum{j=0..n} Stirling2(n, j) * A060052(j, k). - David Pasino, Sep 22 2016

Extensions

More terms and additional comments from Vladeta Jovovic, Feb 14 2001
a(37) corrected by Gerald McGarvey, Dec 03 2009

A060093 Number of 5-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 125, 722, 2565, 7180, 17335, 37750, 76093, 144340, 260590, 451440, 755040, 1224964, 1935050, 2985380, 4509590, 6683720, 9736835, 13963670, 19739575, 27538060, 37951265, 51713706, 69729675, 93104700, 123181500
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=5 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 9, 9) - 5*binomial(n + 5, 5) - 10*binomial(n + 3, 3) + 20*binomial(n + 2, 2) + 30*binomial(n + 1, 1) - 60*binomial(n, 0) + 24*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+9, 9) - 5*binomial(n+5, 5) - 10*binomial(n+3, 3) + 20*binomial(n+2, 2) + 30*binomial(n+1, 1) - 60*binomial(n, 0) + 24*binomial(n-1, -1).
G.f.: y^4*(-528*y + 125 + 970*y^2 - 980*y^3 + 570*y^4 - 180*y^5 + 24*y^6)/(-1 + y)^10.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n-1) *(n-2) *(n-3) *(n^6 + 51*n^5 + 1165*n^4 + 15885*n^3 + 130954*n^2 + 660504*n + 1451520)/ 362880, n > 0. - R. J. Mathar, Aug 10 2017
Showing 1-2 of 2 results.